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PREFACE 

Representation theory has very strong interplay with group structure. 

This is particularly true for fi'nite solvable groups G, because their chief 

factors are irreducible modules for G over fields of prime order. In ~ this 

monograph, we present some topics and problems arising in the representa­

tion theory of solvable groups. In particular, we study modules over finite 

fields, yet give applications to ordinary and Brauer characters of solvable 

groups. 

It is not our intent to develop representation theory from scratch, but 

rather to 'discuss techniques and problems iil current research. On the other 

hand, we wish that the:manuscript be accessible to a reasonably wide group 

of people; including advanced graduate students, working in group theory. 

vVe refer to two basic references, namely: 

[Hu] B. Huppert, "Elldliche Gruppen I" and 

[Is) 1. M. Isaacs, "Character Theory of Finite Groups". 

We believe that readers fairly familiar with these texts should have little 

problem readilig the manuscript. We do also quote some material from the 

, first chapter appearing in the sequel to [Hu], namely Chapter VII of «Finite 

Groups II" b~ B. Huppert, and N. Bla'ckburn [HB]. That chapter is entitled 

«Elements of General Representation Theory". Many of the results from 

these sources for which we have frequent use are presented (generally without 

proof) in Chapter, 0, "Preliminaries". Since we present some 'applications 

to block theory; we state a+1d/ or prove several related results in Chapter O. 

To this end, we have quoted some material here from "Representations of 

Finite Groups", by'H. Nagao and Y. Tsushima [NT], although rnany of the 

quoted results also appear in the sketchy introduction to block theory that 



viii 

. appears in the last chapter of [Is]. In our preliminary chapter, we do include 

proofs of Fong reduction and the Fong-Swan Theor~m. 

Of course, module (and character) induction is a powerful tool in repre­

sentation theory, particularly when paired with Clifford's Theorem. Conse­

quently, we need to study "quasi-primitive" linear groups, where those tech­

niques do not apply. For solvable groups, the condition of quasi-primitivity 

imposes strong restrictions on the normal structure of the group. ~We study 

this extensively in Section I, without restriction on the underlying field. An . 

important class of solvable (quasi-primitive) linear groups over finite fields 

are th~ "semi-linear" groups. We study these in Section 2 along with con­

ditions that force a linear .group to indeed be a semi-linear group. Section 

3 gives bounds for orders and derived le:ngths of solvable linear groups and 

permutation groups. 

Much of Chapters II and III (Sections 4 through 11) deals with orbits 

of solvable linear groups or, as in Section 5, orbits of permutation groups. 

Of course, for solvable groups, orbit sizes of linear groups and those of 

permutation groups are closely related. This becomes clear in Section 6, 

. where we give a new proof of Huppert's classification of doubly transitive 

solvable permuta.tion groups. Many of the questions about orbit sizes of 

linear groups are related to the existence (or non-existence) of ".regular" 

orbits. Our emphasis here again is on finite fields, because otherwise reglilar, 

orbits always exist. The main feature of Chapter III, which is critical for, 

Chapters IV and V, is the study of linear groups with "Sylow centralizers". 

Chapters IV and V deal with ordinary and modular characters and their 

degrees. In Section 12, we prove Brauer's height-zero conjecture for solvable 

G, us}ng material from Sections 5, 6; 9 and 10. In Section 15, we give a 

character-counting argument and use it to prove the Alperin-McKay con­

jecture for p-solvable groups. In Section 16, we discuss the derived length 

and the number of character degrees of a solvable group. This partially re­

lies on a theorem of Berger, presented in Section 8, which unlike other orbit 

theorems gives the existence of small orbits. 

IX 

The final chapter introduces the theory of "7r-special" characters and 

gives some applications thereof. Also included is Isaacs' canonical lift of 

Brauer characters (for p > 2). 

Olaf Manz 

Heidelberg and Frankfurt 

Germany 

T. R. Wolf 

Athens, Ohio 

USA 
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Chapter 0 

PRELIMIN ARIES 

For this manuscript, all groups will be assumed finite. If G is a group 

and F an (arbitrary) field, an F[ Gl-module V will mean that V is a right 

F[G]-module and that V is finite dimensional over F. Recall that V is 

completely red'll.cible if V is the sum of simpl.e F[ G]-mo<.lules. In this case, 11 

is actually a direct sum of simple modules. Indeed, if V =1= 0 is completely 

reducible, then V = VI E9 ... ED Vi where Vi =1= 0 is the direct sum o( simple 

isomorphic F[ G]-modules and if W i-a:nd Wj are simple submodules of Vj and 

Vj (l-esp.), then lVj ~ Wj (as F[G]-module~) if and only if i = j. Then Vi 

are calJed the homogeneo1ts components of V and are unique (not merely up 

to isomorphism, but the Vi are unique submodules). Now VI = U1 E9 ... E9 U t 

for isomorphic F[G]-modules Uj • While t is unique, the Uj are unique only 

up to isomorphism. 

Because -solvable groups have an abundance of normal subgroups, we 

begin by re~alling Clifford's Theorem: 

0.1 TheorelTI. Suppose that V is an irreducible F[G]-module and N ~ G. 

TIl en 

(a) V N is completely reducible and so V N = VI E9 ... EB VI where the Vi 

are the homogeneous components of V N; 

(b) G / N transitively permutes the Vi by right multiplication; 

"(c) If VVi andWj arc irredllcible N -submodules of Vi and Vj (resp.), 

t1:WlJ clim(T1Vi) = dim(T¥j) for all i, j; and 

(d) If I = {.g E G I V1g = VI} is the inertia groUp in G of VI, then VI is 

an irreducible I -module and V ~ V? (indllced [rom I to G). 



Proof. This is Hauptsatz V, 17.3 of (flu]. o 

-0.2 Proposition. Suppose that V is an irreducibl~ F[GJ-module, N ~ G 

and VN is not homogeneous. 

(i) If G ~ G is maximal such tlJat Ve is not lwmogeneQus, then G / G 

faithfully and primitively permutes the homogeneous components of 

Ve· 

(ii) There existsN ::; 1J <J G suclJ that VD = TIVI EB ... EB Ws for D­

invariant Wi that are faitlJfully and primitively permuted by G I D 

(s > 1). Furthermore, wlJenever N ::; L ::; D with L ~ G, VL is not 

lwmogeneous and each lIVi is a sum of llOmogeneous components of 

VL· 

Proof. Write VN = VI EB··· EB Vt where the Vi are the hornogeneous con~­

ponents of V N· Suppose that N ::; M ~ G and lIV = VI EB ... EB Vs is 

M -invariant. We claim that W is a direct sum of homogeneou~ components 

of VA{. To see this" let X and Y beisom()l'phic irreducible M-subrnodules of 

V with X ::; W. Now X N and YN have isomorphic irreducible submodules 

Xo and Yo (resp.). Since the Vi are homogeneous components of V N, X 0 

and Yo are contained in the same Vi. Thus Yo ::; Wand Y n W i 0. Then 

y,::; l'V, establishing the claim. 

(i) Now'G transitively permutes the homogeneous components of Ve. Let 

Ie ?e the kernel of this permutation action, so that G ::; I( :S! G.. Applying 

'the last paragraph to Ve, each homogeneous component of Ve is a direct 

sum of hon.1ogeneous components of Vf(. By maximality of G, G = 1(; 

proving that G/G acts faithfully on the homogeneous components of Ve. 

This action is primitive by the first paragraph and choice of G. 

, (ii) Sillce G transitively permutes n = {VI,"" Vt}, we may write n = 
'~l U ... U 6. s with s > land G primitively permuting {6. 1 , ..• ,6. s }. In 

other words, VN = lIVI EB'" EB Ws where s > 1 and each VJ7i is a sum of some 

homogeneol~!, components of VN and such that G primitively permutes the 

IVi . Let Dbe the kernel of tlle penllutatioll action of G on {VV1 , .. ·, ~V.9}. 

Then VD = ltVl EB· .. EBWs for D-invariant Wi that are faithfully and primi­

tively permuted by GID. Furthermore, whenever N ::; L ::; D with L ~ G, 

each (Wi)L is a sum of homogeneous components of VL, by the first para­

graph. Since s > 1,VL is not homogeneous. . 0 

The structure of solvable primitive permutation groups is well-known 

and discussed bel~w in Section 2. In p~rticular, a nilpotent and primitive 

pennutation group has prime order (see (Hu, Satz,II, 3.2)). 

0.3 Corollary. Suppose tlJat V is an irreducible G-module, N g G and 

VN is nqt lwn]ogeneous. If GIN is nilpotent, there exists N ::; G <J G with 

IG : GI = p, a prime such that Ve = VI EB ... EB Vp for homogeneous compo­

nents Vi of Ve: 

0.4 Proposition. Suppose that V is an irreducible F[G]-module and that 

K is an extension field of F. 

(i) If char (F) i 0, then V 0:F K = i'VI EB ' ... EB WI for non-isomorphic 

irreducible K[G]-modules Wi. 

(ii) If Kisa Galois extension of F, then V 0:FK ~ e(Vl EB··· EB Vt ) for 

a posi~ive integer ~. and non-isomorphic irreducible K[ G}-modules 

Vi. Furthermore the Vi are afforded by representations Xi that are 

conjugate un der Gal (K : F). In deed {Xl, ... ,X d is a single orbi t 

under Gal (K :_F). 

Proof. See [HB, Theorems VII, 1.15 and VII, 1.18 (b)]. The K[GJ-module 

V0:F K is denoted by VIC in [HB] and by VIC in (Is]. 0 

Suppose V is a faithful irreducible F[G]-module for some field F. If K is 

an extension field of F, then G has a faithful irreducible K[G]-moclule vV by 

Proposition 0.4. By choosing JC to be algebraically closed, G has a faithful 

absolutely: irreducible representation X: G -t 1I1n(K) for some n, Then th~ 



[1.1 . l'jiLLIMINAIUES Chap. lJ 

L centralizer in A1n(JC) of X( G) consists of scalar matrices. If G is abelian, 

r: then G must be cyclic and n = 1. We thus have the following well-known 
i 

li_result which is of particular importance to the structure of quasi-primitive 

linear groups. 

II 

LO.5 Lemnla. If all abelian group A has a faithful irreducible module VV 

(over an arbitrary field F), then A is cyclic. If furtil erm ore W is absolutely 

irreducible, then dimF(W) = 1. 

The following lemma is sometimes referred to as Fitting's lemma, al­

though [Hu] credits Zassenhaus. 

I: , . 
II ' , 
1.-0.6 Lenlllla. Suppose G acts on an abelian group A by automorpiJisms 

and (IGI, IAI) = 1. TiJen A = [G, A] x CA( G). 

Proof. See [I-Iu, Satz III, 13.4J. o 

We use hr (G) to denote the set of the ordinary (i.e. complex) irreducible I :ha.racters of the group G and let char (G) denot~ th~ set' of all ordinary 

-eharacters orG. Of course, cl~ar (G) ~ cf (G), the set of class functions of 

L
' r;, an. d we let [X, B] denote the, inner product of X, B E cf ( G). For N :s! G ' 

I md BE Irr(N), we let Irr(GIB) = {X E'Irr(G) I [XN,B] 1= o}. By Frobenius 

reciprocity, Irr (GIB) IS the set of irreducible constituent's of the induced 

:haracter BG. 

. Let F be a field of characteristic p such that F contains a IGI-th root of 

Lmity. Then F is a splitting field for all subgroups of G (i.e. every irredvcible 

F-representation of every subgroup of G is absolutely irreducible). It is cus-

L" 'omary to choose F so that F is a quotient ring of an integral domain of 

, harnd,eristic zen). This is oneIl done via p-modular system's, as in Section 

3.6 of [NT]. A slightly different approach is given in Chapter 15 of [Is]. We 
r . . 
, hould point out here that Chapter 15 of [Is] is only intended as an introduc-

~ion to modular theory and as such is not complete. Recall that each g E G 

ell1l!>.O P H.I~ L Hvl [ l~ A H.I ES 

has a unique factorization g = gpgll' = gp' gp where gp is a p-elem~nt and gp' < , 

is p-regular (i.e. p 1 o(gpl )). Each'irreducible F-chanicter X of G can then be 

lifted to a complex-valued function 'cp, defined on p-regular elements of G. 

Now cp is called an irreducible Brauer character of G, the set of W11ich is de-

,noted ~B,rp(G). (Actually there are some choices involved ~n this procedure, 

but it is usual to do this simultaneously for all irr~ducible represent~tions 

, of. all subgroups of G to avoid complications). Because x(g)'= x(gpl) fo~ 

all g E G, defining the lift cp E IBr p( G) only on p-regular elements loses, 

no information and avoids technical difficulties. Now there is a 1-1 corre­

spondence between IBrp( G) and the irreducible F-representations. Indeed,­

if cp E IBr p( G) corresponds to the F-representation afforded by an F[G]­
module V, then <p(I) = dim(V). Also IBrp( G) is linearly independent over 

C andlIBrp( G)I is the number of p-regular classes of G .. 

Let N :s! G'and«p E IBrp(N), We write IBrp(Glcp) = {,8 E IBrp(G)1 cp is a 

constituent of ,8N}. Now the induced character!.pG is a positive Z-linear sum 

L: a·if/·i of irreducible Brauer characters Pi, even though the corresponding 

iilduced module may not be completely reducible. 'By Nakayama reciprocity 

[RB, Theorem VII, 4.13 (a)] and Clifford's Theorem 0.1, each X E IBrp(GI!.p) 

is a constituent <?f cpG. WhenG / N is a p' -group, we get the convers"'e and 

more. 

0.7 Proposition.' Suppose tllat G / N is a p' -group, tllat·!.p E IBrp(N) and 

B E IBrp( G). Then tile multiplicity of cp in B N equals tile multiplicity of B 
. in cpG. 

Proof. Let F be a splitting field for Nand G in chanlcteristic p. Let V 

be an (irreducible) F(G)-m~dule affor~ing B, and vVan (irreducible) F(N)­

module affording!.p. Now VN is completely reducible by Clifford's Theorem. 

Since G / N is a p' -group aird VV an irreducible N -module, indeed llVG is 

completely reducible (see [HB, VII, 9.4]). With both, VN and TV G completely 

reducible and F a splitting field for Nand G, it follows from Nakayama 

reciprocity ([HB, VII, 4.13]) that the multiplicity of vV as a composition 

factor of VN equals the multiplicity of V as a composition factor of H1G. 

. ' 



The propositiqll now follows. o 

O~B TheorelTI. Let N ~ G and 'P E IBrp(N).If 1= Ic('P), then1jJ ---t ljJC 

is a, bijectioll from IBrp(II'P) onto IDrp( GI'P)' 

PI~oof. For ordinary characters,this is Theorem 6.11 of [Is]. More generally, 

a similar proof works here. Let X E IBrp(GI<p). Clifford's Theorem 0.1 (d, 

a) shows that X = flc for some fl E IBrp(II<p) and that XI = fl + A for a 

(possibly zero) Brauer character A of I with no irreducible constituent of A 

lying i~ IBr1)(II'P)' 

,Let 1p E IBrp(fl<p), By Nakayama reciprocity [RB, VII, 4.13 (a)], there ex­

ists, E IBrp(G) such that 1jJ is a constituent Of'I. But then, E IBrp(GI<p) 

. an~ the last paragraph implies that 1jJ is the unique irreducible constituent 

of')'I lying in IBrp(II<p) and 1jJG = ,. So 1p -t 1jJc is a 1-1 and onto map 

fr()m IBrp(II<p) onto IBrp(GI<p), 0 

Theorem 0.8 applies to ordinary characters too; just choose p so that 

pilGI· 

0.9 Lenllna. Suppose that N :sl G,' 'P E IBr1J ( G) and 'P N is irreducible. 

Tfell a -t a<p is a one-to-one map from IBrp( GIN) onto IBrp( GI<p N)' 

Pi·oof. By [RB, Theorem VII, 9.12'(b,c)], note cv.'P E IBrp(G) for each 

,cv. E IBfp( GIN) and the mapping cv. ~ cv.'P is one-to.:one. Let j.l E 1:8r1J ( GI'P N). 

H~ suffices to show fl = fJ'P for ~ome fJ E IBrp( G / N). We miri1ic the proof of 

[RB, Corollary VII, 9.13]. 

,'; Let F be an algebraicaily closed field of characteristic p and V an irre-

, ducible F{G1-module affording!.p. Since Ii E IBr1J ( GI'P N), Nakayama reci­

Pf9,city implies that fl is a constituent of 'PN c (see comments preceding, 

Proposition 0.7). Thus fl is afForded by a cO,mpositibn factor of V N C ~ 

~,'®:FF(G!N) (see [HB, VII, 4.15(b)]).,lf 0 ~ Uo < U1 ••• < Um 

Fe GIN) is a composition series of the F( G)-module :F( G / N), then for each i 

V@FUi/V@FUi-l ~ V@Ui/Ui_ri'sirreducible, again by [H~) VII, 9.12(b)). 

, Thus, by th~ Jordan:-Hol,der theorem, ~ is afforded by V @:F W for an irre-

ducible F(G/N)-module ltV. So JL = {J'P for some fJ E IDrJI(GIN). 0 

In presenting Gallagher's Theorem (Lemma 0.9 for ordinary characters), 

Issacs [Is, Theorem 6.16] first proves the following stronger r9sult under the 

assumption'that cp is G-invariant. 

0.10 LenuTIa. Suppose that N ~ G, tllat <p, B E Irr(N) and B = XN for 

some X E Irr( G). Assume also tllat 'PfJ E Irr(N) and Ic( 'P) = Ic( tpfJ). Then 

(J' ---t (J'X is a bijection from Irr(GI<p) onto Irr(GI'PB). 

Proof. Let 1= Ic(tp) = Ic('P.B). For 5 E char(I), observe that (5XI)G = 

8G X (see [Ru, V, 16.8] or [Is, Ex 5.3]). Now Theorem 6.16 of [Is] yields 

. , that a ~ aXI is a bijection from Irr(II<p) onto Irr(II<p8). Employing the 

Clifford correspondence (Theorem 0.8), C\' ---t (O'XI)C = aCx is a bijection 

from !rr( Iltp) opto Irr( GI'P8). Since 0' -t a C is a bijection from Irr( II<p) 

onto Irr(Gl'P), the lemma follows. 0 

, To eniploy the above, we would like conditions sufficient to extend char­

acter~. Theorem 0.13 is quite useful, in part due to uniqueness (e.g. see 

Lemma 0.18). 

0.11 Proposition. Suppose tllat GIN is cyclic and tp E IBrp(N) is G­

invariant. Then 'P = fJ N for some f3 E IBr p( G). 

Proof. See [HB, Theorem VII, 9~9]. o 

0.12 Proposition.S~ppose N ~ G, B E Irr(N) and B extends to P wlJen­

ever P / N is a Sylow subgroup of GIN. Tllen B extends to G. 

Proof. See (Is, Corollary 11.31]. ' D, 
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Let ft E char (G) and let X: G ~ G L( n, C) be a representation of G 

affording ft. For g E G, let det(ft)(g) = det(X(g)). This is independent 

of the choice of X and det(tt) is a linear chmacler of G. We let o(ft) be 

the order of the linear character det(fl) of G. The fo1l9wing theorem can 

often be combined with Proposition 0.12' to extend characters. Note that 

det(<p+ft) = det(<p)clet(ft), and det(<pft) = (det<p)Jt(l)det(ft)cp(l). 

0.13 Theorenl. Suppose that N ~ G, 8 E Irr{N) " is G-invariant and 

(o(8)B(1), IGIN!) = 1. There exists a unique extension X E lIT (G) of 8 

satisfying (o(X), IG: NI) = 1. Also, oC-x) = o( 8). 

Proof. See [Is, Corollary 8.16]. o 

In Theorem 0.13, we call X the canonical extension of 8 to G. The unique­

ness in Theorem 0.13 is quite useful, often for inductive purposes. For exam-

pIe, we use it to prove the Fong-:Swan Theorems. It is also used in the pro9f . 

of Lemma 0.18, which guarantees the existence of characters of p'-degree 

and is helpful in Fong reduction. First however, we look at " Glauberman's 

Lennna", Glaubennan correspondence, and sorne" consequences thereof. 

0.14 LCllllna (Glallbennan). SlIppose tlwt A a.cts on G by automor­

phis1l1s and (IAI,IG!) = 1. Assume tllat botl] A and G act '~n a set nand 

that G acts transitively on n. In addition, suppose that (wg)a = (wa)ga for 

all ~ E A, g E G, and w E .n. T1Jen 

( a) A has fixed points in ni and 

(b) Cc(A) acts transitively on the set of fixed points of A in n. 

Proof. See [Is, Lemmas 13.8 and 13.9]. Note that the hypothesis (wg)a = 
(wa )ga is equivalent to the condition that the semi-direct product G A acts 

on n (consistently wi th the actions" of G and A). d 

If a group A acts on G via automorphisms, we let IrrA( G) = {X E Irr (G) I. 

XU = X for aJl a" E A}. 

Chap. 0 PRELIMINAJUES 

0.15 Theoreln. Whenever A acts on G by automorphisms with (IAI,IGD = 1 

and A solvable, tllCre is a uniquely defined bijection p( G, A) : Irr A (G) ~ 

Irr (C) where C = CoCA) such that 

(i) If A is a p-group and X E IrrA(G), thenxp(G,A) is the unique 

(3 E 1rr(C) satisfying [xc,(31 i= 0 (mod p). 

(ii) IfT ~ A, then p(G,A) = p(G,T) p(Co(T),AIT). 

Proof. See' [Is, Theorem 13.1]. o 

By "uniquely defined" above, we mean there is only oI"ie such map (in­

deed, else (ii) would be meaningless) and this map is independent of choices 

made in the algoritlun implied by the theorem. This map is·known as the 

Glall,bcrman corrc3ponricncc. If A acts on G with (IAI, IGI) = 1, hut A 

not solvable, then IGI is odd. Isaacs [Is 2] has exhibited a "uniquely de­

fined" correspondence whenever A acts on G, (IAI, IG!) = 1, and IGI is odd. 

Moreover, this agrees with the Glauberman correspondence when both are 

defined [Wo 2]. The combined map is thus referred as the Glaubcrman-

" Isaac3 corrcspondcnce. The following appears in [Is, Theorem 13.29] and 

has a couple of use~ in this section alone. 

0.16 Lenlma. Suppose A acts on G with A solvable and (IAI, IG!) = 1. 

Suppose N ~" G is A-invariant, X E IrrA(G) and 8 E IrrA(N). Tl]en 

[XN,8] =1= 0 if and only if [Xp(G, A)Nnc, 8p(N, A)] =1= o. 

Much of the following lemma is a consequence of Glauberman's lemma 

above. In fact, no more is required for G solvable or for parts (a), (b) and (c) " 

in the general case. ForG non-solvable, parts (d), (e) and (f) also employ 

the Glauberma.n correspondence and more. All parts appear somewhere 

" (possibly as exercises) in Chapter 13 of [Is]. Due to its importance here 

(particularly when G is solvable), we give a sketch. 

0.17 Lemnla. Suppose that N S; G :s! r with (Ir : GI, IG : Nl) = 1 and 

N :g r. Let HIN S; rlN lvitll G n H = Nand r = GH. Suppose tJ;at 



" ! (} E hr (G) is r -invariant and <P E Iff (N) isH -invariant. Then 

(a) () N has an H -iilVariant i~Teducible constituent a; 

(b) IfCc/N(HjN) = 1, t1len et is unique; 

(c) IfCO/N(HIN) = GIN, then every irreducible constituent of8N is 
H -invariant; 

(d) rpo has a r -invariant irreducible constituent ry; , 

(e) IfCC/N(HIN) =1, then ry is u.nique; and 

(f) If CC/N(H I N) ,= GIN, then every irreducible constituent of epc is 

r -invariant. 

Proof. (a, b, c). By Clifford's Theorem, GIN transitively pennutes the 

: ,set X of irreducible constituents of 8 N". Also HI N permutes X and acts on 

,GIN. Since (IHINI,IGINI) = I, Glauberman's Lemma 0.14 applies: some 

,'<element of X is HIN invariant and Co/N(HIN) transitively permutes the 

,'H-inva.riant elements of X. Parts (a), (b) and (c) follow. 

(d, e, "f). Arguing by induction on IGINI = Ir :"\HI we may assume 

'" without loss of generality that GIN is a" chief factor of r (note, for part (e), 

part (a) is employed along with the "inductive hypothesis). Let 1= Ir(ep), so 

t1H~t H:::; I:::; r and I = (InG)H. Now InG = Io(<p) is H-invariant. Also' 

~ '--4 ~o giv'es a biject.ion from hr (I n GI<p)" onto Irr (Glep) and furthermore 

~ is iI-invariant if and only if ~c is H-invarianL The result follows by 

induction should In G < G. Thus G :::; I and <P is r-invariant. 

First suppose tpat GIN is abelian. The group Irr (G IN) of linear char­

acters acts on In (Glrp) by multiplication apd this action is transitive (see 

)Is, Exercise 6.2]). Now riG ~ HIN acts on both Irr(GIN) and Irr(GI<p). 

," ,~ere G lauberman' s Lem~la 0.14 yields (d) , (e) and (f). 

Final.1y we may assume that GIN is non-abelian an~l thus non-solvable. 

Since 11'( <p) = r, \~e may in fact assume that N :::; Z(r) (see [Is, Theorem 

11.28p. Then there exists Z'S; Nand G I , NI ::::! r such that G = G 1 X Z,­

;,N = NI X Z and (III INI) IGIl) = 1. We may write <P = <Pl X A (uniquely) 

II 

w~th epl E Irr(Ndand A E Irr(Z). Also {3 ---t {3A defines a bijection from 

Irr(G1Ic,ol) onto Irr(GI<p), Since Zl :::; Z(G), this map commutes with H. 

Without loss of generality). = 1z and Z = 1. 

We now have that (Ir : GI, IGI).= 1. Choose S S; H with r = GS and 

1 = Gns. Of course 17 E Irr (G) is H-invariant if and only if-it is S-invariant 

and CC/N(HIN) = CO/N(S). Since GIN is not solvable, the Odd-order 

Theorem implies that S is solvable. Setting G = Co(S), the Glauherman 

correspondences apply: both pa : hrs(G) ---t Irr(G) and PN : Irrs(N) ---t 

Irr(GnN) are bijections. Let IL = c,oPN, and X E I~rs(G). By Lemma 0.13, 

[XN,<p] =f. 0 ~ [(Xpo)Nnc, fL] =f. O. He~ce IIrrs(GI<p)1 = IIrr(GlfL)l" =f. O. 

This proves (d). If CC/N(S) = 1, then G :::; N an'd N n G = N. Then 

IIrr s( GI<p)1 = IIrr (Glp)1 = 1. This proves (f). Finally, we may aSSUlne for 

(e) that S ~entralizes GIN and hC~lce G. Part "(c) is t1H~ll t.riviaL 0 

We combine the extendability Theorem 0.13 with Glauberman correspon­

dence for the next lemma-w.hich· has "I1UmerOUs uses. For example, it. can be 

used to show that when G is p-solvable and <p E Irr (Opl (G)) is G-invariant, 

then the unique p-block covering {<p} is indeed a block of maximal defect 

(see Theorem 0.28 below). 

0.18 Lenllna. Suppose that GIN is p-solvable and <p E Irr (N). Assume 

p f o(ep) <p(1) and p tlG: Io(<p)I. Then t.here exists X E Irr(GI<p) such ~hat 

p t X(l). 

Proof. vVe argue by induction on IG : NI. For 7./J E Irr(Io(<p)), we have, 

p t 1f(1) if and only jf p t 1P,C(1) because p t IG: Io(c,o) I· Employing Clifford's 

Theorem and the inductive hypothesis, we can assume that <p is G-invariant. 

Let MjN be a chieffactor"of G. If lvflN is a p-g"roup, Theorem 0.13 shows 

there exists a uniquee>;:tension 8 E Irr(l\1) of <p satisfying p t 0(8). Since (p 

is G-illvariallt, () is <:1:1so G-illv,U'iant by uniqueness. Certainly ]J f G(1) and, 

the' inductive hypothesis ensures the existence of et E Irr (GIG) such that 

p t et(l). Since a E Irr(GI<p), the result follows" in this case, So we may' 
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aSSlllllC tha.t jIliN is a. 1/ -group. 

Let P E 'Sylp( G). By Lemma 0.17 (d), thei'e exists /1 E hr (Mltp) such 

l~that It is P-invariant. In particula.r, p f IG : IC(ll)l. Also p t Il(l) because 

p filiI: NI tp(l). Now PN is 'a sum <PI + .. '+<Pm of (not necessa.rily distinct) 

fl <Pi E Irr(N) that are lvI-conjugate to tp. Hence O(tpi) = o(<p) is a p'-number 

L for ilIl i. Now 

r: (det /-l) N = det(J-lN) == II det( tpi). 
ii i=l 

;'I-Thus (detp')N has J/-order as a linear character of N. Since]J t 1111: NI" 
::i indeed p t o(pJ Now we can apply the inductive hypothesis to conclude 

!L"the exist.ence of X E hI' (Gill) sHch that p 1 X( 1). The proof is complete as 

X E Irr(GI<p)· 0 

The following well-known lemma appeared as "Lemma 1.2.3" of the im­

portant Hall-Higman p'aper [HH]. It appears in [HB] as Lemma IX, 1.3. 

~,-Recal1 G is 7f-separable (for a set of primes 7f) if it has a normal series, 

where each factor group is a 7f-group 6r 7ft-group. For completeness, .we 

mention that G is 7f'-solvable if G has a normal series with each factor group 
I..i_ 

either a 7ft-group or solvable 7f-group. Of course, p-separabilityis equiv-

[I alent to p-solvability. By the Odd-order Theorem,G 7f-separable implies 

t.that Gis 7f-solvable or 1ft-solvable. When Gis 1f-separable, the analogues of 

the Sylow theorems (existence, containment, and conjugacy) hold for Hall L rr-subgroups. 

LO.19 Lemma. If G is rr'separab16, then Ca(O.,.,(G)/O.(G)) c:; 0.,.'( G). 

The following well-known result will be used rei)eatedly, often without 

L~eference. A proof is given in [Hu, Satz V, 5.17]. Alternatively, lise Clif­

,ford's Theorem 0.1, Proposition 0.4, and Lemma 0.5 to reduce to the case 

~ Nhere IGI = p, F is algebraically closed, and dimF(V) = 1. Then the cor­

L_~esponding representation X: G --t F must be trivial because 1 is the only 

pth root of uni ty in F. 

0.20 Proposition. IfF is a completely reducible and [uitilful FlG1-modu,lc 
and char(F) = PI" then Op(G) = 1.. 

Recall cf (G) denotes the set of class functions of G, i.e. the set of complex­

~a.lued functions on G that are constant on conjugacy classes of G. Fix 

a prime p and let dO(G) be the sd of complex-valued functions defined 

on p-regular elements of G that are constant on G-conjugacy .classes. For 

a E cf (G), we denote, the restriction of a to p-regular eleinents ~y aO E 

cf ° ( G) . Now Irr (G) and IB l' p ( G) are bases for the vector spaces cf (G) and 

cf°(G), respectively (see [Is, Theorems 2.8 and 15.10] or [NT, Theorems 

3.6.2 and 3.6.5]). For X E Irr (G), we have that XO is a positive Z-linear 

combination of Brauer 'characters (sec [NT, p. 233] or [Is, Theorem 15.8]), 

and it easily follows that each c.p E IBr]l( G) is a constituent of 1po for some 

1/J E lrr (G). (ACtually,' more can be said: tp is aZ-linear combina.tion of 
\ 

{xOIXEIrr(G)}.) , 

The set IBrp(G) U Irr(G) is a disjoint umon of p-blocks of G. This 

is often done. by decomposing the group algebra F[ G] (for a sufficiently 

large field F of characteristic p) into a direct sumEB I j of indecomposable 

two-sided ideals. Each ideal is then called a block. Each indecomposable 

F[G]-module V is associated with a unique IJ· (determined by V Ij i= 0). 

In such a way the characters of G are partitioned into p-blocks (see Section 

3.6 of [NT] for more details). The following theorem 'characterizes blocks 

sufficiently for most of our purposes. 

For a p-block B of G, we let Irr (B) denote B n hr (G) and IBr pCB) = 

BnIBrp(G}. Wea.lsolet k(B) ~IIrr(B)I, keG) = IIrr(G)I, I(B) = IIBrp(B)1 
and leG) = IIBrp(G)I: Also bl(G) denotes the set of p-blocks of G. 

0.21 Theorem. Let X, (J E Irr(G) and J-LE IBrp(G). Then 

(a) X and (J lie in the same p-block of G if and orily if there exist 

1Pl,"" ,1Pt E Irr (G) witl1 X = 1/Jl a~d (J = 1/Jt such that 1j;? and, 

1/J?+1 '}lave a commonirreducible Brauer character as a constituent 

(1 '5: i:S; t -1). 

1.1, 
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'(b) If p is a constituent of Xo, then X and p are in tlle same block of G. 

Proof. See [NT, Theorem 3.6.19] or [Is, Theorem 15.27]. o 

,Theorem 0.21 completely determines the p-blocks of G. This "linking 

pr~cess" also has, an analogue of part (a) for Brauer characters: given" <p, 

p E IBrp( G), then cp and J.L lie in the same p-block of G, if and only if there 

exist 11,.·. lit E IBrp(G) 'with cp = 11, 'p = It such that Ii and li+l are 

both constituents of some f3?, f3i E Irr (G), 1 ~ i ~ t - 1. This al~alogue is 

an easy consequence of Theorem 0.21 (a, b). 

vVhen p t IGI, Irr (G) = IBrp( G) and the p-blocks of G are singletons. 

0.22 Proposition. Suppose that N is anormal p'-subgroup of G and rp E 

IBrp(N). Tllen Irr (Glcp) U IBrp( Glcp) is a (disjoint) union of p-blocks of G. 

Proof. "Suppose that X, 1jJ E Irr (G) and that XO and '1/)0 have a COlnmon 

irreducible constituent '7 ,E IBrp( G). The irreducible constituents of 17N 

are;common to both X~ ~ XN and 1jJ~ = 1PN, i.e., XN and 1PN have a 

co~mon irreducible constituent p. By Clifford's Theorem, the irreducible 

Gon~titucnl;s of XN ana 1/JN coincide (up to multiplicities). If B is th~ p­

bloc~ containing X, then Irr(B) ~ Irr(GI/l). Now also Theorem 0.2~ (b) 

shows that IBrp(B) ~ IBrp(GIJ.l), as also It E IBrp(N)., This proposition 

now follows. o 

~et B be a p-block of a v-solvable group G. The first steps of Fong' 

red'/j,ction are to observe that B covers {<p} for some <p E Irr(Opl(G)) and 

tlH~t the Clifford correspondence gives a bijection between a block of .Ic ( <p) 

, B:nd B (see ?22 and 0.25). Should IG{rp) = G, the next steps are to show 

B ~ Irr(Gltp) U IBrp(Glcp)and the defect groups of B are Sylow subgroups, 

of G (Theorem 0.28). Finally one must give the Brauer correspondence in 

the two cases (i) Ic(cp) < G and (ii) IG(cp) = G (see Theore~ 0.29 and 

o.aO). When Ib( r.p) = G, we use LerlJIUa' 0.18 to show t~e defect groups are 

~'J II.ll ). \; 

Sylow p-subgroups of C. This appears to be different and a'little easier than 

what appears in the literature. Also, when Ia( cp) = G, instead of stating 

B = Irr (Glcp) U IBrp( G), many texts construct a block, B of a group G 
with a bijection between Band' B. This gets to be a little awkwar,d when 

. one also needs to k~ep track of the Brauer correspondence .. Not that our 

proof is much different, rather we find the statement more convenient to use. 

It should be evident from 0.29 and 0.30 that ~here is a strong connection 

between the Brauer and Giauberman c'orrespondences. Our proofs of Fong 

reduction' use just standard results of block theory. Some results of Fong 

reduction can be found in [NT], but not the interconnections with the Brauer 

correspondence. The latter we need to do McKay's conjecture in Section 

15. Finally, we do the Fong-Swan Theorem with a proof somewhat different 

than 'what appears in the literature. 

0.23 Proposition., Suppose that1jJ E In (H) and 1jJ E b E bi (H). If H ~ G 

and 1jJc E lIT (G), then bC E bl (G) (in the sense of Brauer induction), and 

1jJG E bC. 

Proof. For X E Irr(G) and C a ~orijugacy, class of G, we let C be the class 

sum in C[G] and define wx(C) == x~~I)cl E C where g is any element of C. 

By definition of induced blocks (see [Is, p. 282] or [NT, p. 320]), it suffices 

, to, show that whenever C n H = C1 U ... U Ct for classes Ci of H, then 

t 

w1jJG(C) = LW1jJ(Ci ), (0.1 ) 
i=l 

(Actually, it is sufficient to show that these two agree modulo a maximal 

ideal of a large ~nough subring of the ring of algebraic integers. Of course, 

(0.1) is stronger.) If C n H = 0, then both sides are zero. Without loss of 

generality, C n H =I 0 and we let Xl E Cll "" Xt E Ct. Set X = Xl' Observe 
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as desired. o 

Associated with a p-block B of G is a G-conjugacy class of p-subgroups 

D of G. Then D is called a defect group of B, and we say that B has p-defect 

d if IDI = pd. Let pmlilGI (that is pm is an exact divisor of IG\). For X E B, 

there is a Ullique integer h, called the he'ight of x, such that pm-d+h IIX(l). 
We see that h is non-negative. 

0.24 Lemma. Let B he a block of G wit1] p-defect d. Let pmlllGI. Then 

(i) pm-~ I x(1) for all X E Irr (B) U IBr~(B), 

(ii) plll-elil ,8(1) for some,8 E Irr(B). 

Proof. See [NT, Theorem 5.1.11 (iii) and p. 245] or [Is, Theorem 15.41]. 

o 

Choose X E Irr(B) with height zero and write XO = L aaa (a E IBrp(B)). 

Evaluating both sides at 1, there exists Jl E IBrp(B) of height zero (with 

p tal')' 

0.25 Lelnma. Let B E Irr (I() where I{ ~ G and I{ ::; Opl (G). Set I = 

IG(B). Let ~, ,8 E Irr(IIB) U IBrp(IIB). Tllen 

(i) a and (3 lie in the same p-block of J if and only a G and (3G lie ill the 

same p-block of G; 
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(ii) If b E bi (JIB), then B := {<pG I <p E b} is a p-block in ~I (GIB). Also 

B = bG,in the sense of Brauer induction; 

(iii) rfb Ebl(IIB), then band bG llave a common defect group; and 

(iy) a and a G have tile sallie height. 

Proof. (i) Assume that a G and ,8G lie in the same p-block B E bl (GIB). To 

show that a and ,8 lie in the same p-block of I, we may assume that a and 

(3 are ordinary characters and also that (aG)O and (,8G)O have a common 

irreducible constituent {L E IBr]/( GIB). Writing a O =Li aw i where aj > 0 

and O'j E IBrp(JIB);we have that 

(oP)O = (aO)G= (2:: aWi)G = 2:: a~O'f 

and eachcrf E p3rp (GIB). Thus {L = cry for some i. Likewise /1 =,G for 

some irreducible constituent, E IBrp(JIB) of ,80. By the uniqueness in the 

Clifford correspondence (Theorem 0.8), crj =, is a ~ommon constituent' of 

aD and (30. Hence a and ,8 lie in the same p-block of I. The proof of the 

converse direction is essentially identicaL 

(ii) That, B is a block of G is immediate from part (i). That B = bG 

follows from Proposition 0.23. 

(iii) Since B = bG , a defect group of b is contained in a defect group of B 

([NT, Lemma 5, 3.31 or [Is, Lemma 15.43]). It suffices to show that Band b 

have the sarn~ defect. Let d be the defe~t of b, let pi = IIlp and pm = IGlp. 
Then pi-d is the largest power of p 'dividing ~(1) for all ~ E Irr(b) by 

Lemma 0.24. By (i), pm-d is the largest power of p dividing X(l) for all 

X E IIT(B). Thus B has defect d (again Lemma 0.24). This proves (iii)~ 

(iv) Say a E b E hI (liB) and b has defect d. Let h be the height of a. 

Then pi-d+hll a (l) and so pm-d+hll a G(l). But o;G E bG by (ii) and bG has 

defect d by (iii). Thus h is the height of aGo 0 

If B is a p-block of G and X E Irr(B), we ca.n writex'O = LcpElBrl'(G)dxcp<p 

. \ 



for non-negative integ~rs dX.'Pl called decomposition n~tm,bers. The k(B) x 

l( B) matrix DB is the decomposition matrix for B. Similarly" we have a 

k( G) x l( G) decomposition matrix for G, namely D = 
(

DBl ) 

DBI 

whei-eB1 , ..• ,B t are the p-blocks of G. The matrices GB :'= DJ;DB and 

C ;- DT Dare Cartan matrices for Band G respectively. Of cot,lrse, 

C ~-(CB' ). In Lemma 0.25, character i~duction is not only a 

. GBt 
height-preserving bijection from b fa B, but indeed decomposition numbers 

are preserved (the proof is trivial). In particular, b 'and B have the ~ame de­

cOI~position matrices and Cartan matrices. (Of course, Db is unique only up 

to row pernwtations and column permutations.) Generally though, Brauer 

induction does not even preserve block size. 

Definition. If N :S! G, b E :bl (N) and B E bl (G), then B covers b if there 

,exists cp E Irr(b) and X E Irr(B) with [XN,cp] f= o. 

0~26 Proposition. Suppose that N :S! G, b' E bI (N) and B E bl (G) 

covering b. 

(i) If <p E Irr ( b), then there exists lp E Irr(B) witl] [1p N, cp] f= O. 

,,(ii) If I E IBrp(b), tlwn there exists (J E IBrp(B) such that I is a con­

stituent of (J N. 

Proof. Choose e E Iri(b) and X E Irr(B) with [XN, e] f= O. Without 

10ss:of generality, we may assume that eo and cpo have a common irreducible 
'\ ., 

constituent f.1 E IBr(b): Since [XN, e] f= 0, there exists ( E IBrp(B) such that 

( is a constituent of xOand f.1 is a constituent of (N. Now ( is a constituent 

ofpG by Nakayama reciprocity (see comment preceding Proposition 0.7). 

Now <po = f.1 + I: aWi with ai '> 0 and IIi E IBr p(N),' it follows that ( is 

an ,i'rreducible constituent of (cpO) G = (cpG)O and h~nce also an irreducible 

cOI~stituent of 1/;° for some 1/J E Irr(GI<p), Note that 1/J E B because ( E B. 
. . 'j 

This proves (i).' 
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To prove (ii), we may choose <P E Irr(b) such that I is a constituent of 

'Po. By (i)~ choose 1jJ E hr (B) with [1) N, cp] f= O. Then I is an irreducible 

constituent of (1/JO)N = (1/JN)o. ,Hence I is an irreduclble constituent of 

(J N for some irreduc~ble constituent (J of 1/J 0
• Since 1/J E B, indeed (J E 

B. o 

0.27 Corollary., Suppose that GIN is a p-group, b E blp(N) and <P E 

IBrp(N). Tllen 

(i) IBrp(GI<p) ={X} for some X,, 

(ii) A unique block ~f G covers b. 

(iii) Ifcp is G-invariant, then XN = cpo 

Proof. By Nakayama reciprocity ([HB, VII, 4.13]), IBr p( Glcp) is not empty. 

Suppose 0:', (3 E IBrp(Glcp)· If <PI,'" ,<Pt are the distinct G-conjugates of <p, 

then O:'N :::: e L~=l CPi and (3N = f ,L~ <Pi, for positiv~ integers e and f, by 

Clifford's Theorem. Because GIN is a p-group, every p-regular elelnent of G 

lies in N and so a = O:'N =,(e/f)(3N = (elf)fJ. By the linear independence 

of IBrp(G), indeed 0:' = (3, proving (i). Part (ii) follows from part (i) and 

Proposition 0.26 (ii). 

We prove (iii) by induction on IG IN 1-· Choo~-e N ~ M s;! G with IG I Nfl = p. 

By (i), IBrp(MI<p) = {p} for some p. Since <P is G-invariant and fL is unique, 

it also is G~invariant. By Proposition 0.11, J.l extends toG and so XM = flo 

By the inductive hypothesis f.1N = cp. Thus X extends <po 0 

0.28 Theorem. Suppose tllat G is p-solvable, I( = Op' (G) and cp E Irr (I{) 

is G-invariant. Then tflere is a unique blo'ck of G covering {cp }, i.e. Irr (G Icp)u 

IBrp( GI<p) is a p-block B of G. Furtllermore the Sylow p-subgroups of G are 

the defect groups of G. 

Proof. As noted in Lemma 0.22, yve have that Irr (Glcp) u Inr (Glcp) is a 

union of p-blocks of G. By Lemma 0.18, there exists X E Irr (Glcp) such that 
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p f x(1). Since p f X(I), X is a character of height zero for a block ofG 

whose defect groups are Sylow subgroups of G (see Lemma 0.24). Thus it 

. suffices to prove that {cp} is covered by a unique block. 

We argue by induction on IG : J{I. If G/ J{ is a p-group, the result follows 

from Corollary 0.27. Hence, by p-solvability, we may choose Oplp( G) ::; 

]vl <JG such that GjM is a p-group or is a p'-group. Now J{ = Opl(At) and 

the inductive hypothesis impl~es there is a unique block bo of M covering 

{<p} (i.e. bo = Irr(1\1Icp) U IBrp(.l\1Icp)). It suffices to show there is a unique 

p-block of G covering boo By Corollary 0.27, we may assume that GjM is a 

p'-group. By Lemma 0.18, there exists 8 E Irr (b o) such that p t 8(1). 

Let 0', 13 E Irr (GI8). By Proposition 0.26, it suffices to show that 0' and 

13 necessarily lie in the same p-block of G. To this end, it suffices to show 

that the algebraic integer 

I.CI (O'(g) _ f3(g)) 
0'(1) 13(1) 

is divisible by p whenever C is a conjugacy class .o£G and g E C; see [NT, 

Theorem 3.6.24] or [Is, Definition 15.17]. Since 0', 13 E Irr (GI8) with 8 E 

Irr(M), M :s! G, indeed O'(g)jO'(1) = fJ(g)jfJ(l) for all gEM. Thus we 

assume that 9 ~ A1 ~ Oplp(G). By Lemma 0.19, 9 does not centralize 

Oplp(G)jOp(G). Thus Cc(g) does not contain a Sylow p-subgroup of 0, 

i.e. p IICI· Because p t IG : MI8(1), we have that p t O'(I)f3(I)~ Thus p does 

divide ICI( ~~n -~tn)· Hence 0' and 13 lie in the same p-block of G. . 0 

Let D be a p-subgroup of G. Brauer's First 1tIain Theorem states that 

b ~ bC is a bijection from {b E bl (N c(D)) I D is a defect group for b} 

onto {B E bl(G)ID is a defect group fot B}. (See [NT, Theorem 9.2.15] 

or [Is, Theorem 15.45J arid note [Is, 15.44] should readPC(P) :::; Ii.:::; 

N(P).) This is called the Brauer correspondence. Given Bo E bi (G), the 

Brauer correspondent. of Bo is uniquely defined up to conjugatioll: if Q is . 

a defect group for B, then the Brauer correspondent of B is the unique 

bo E bl (N c( Q)) with defect group Q satisfying b[f = B. The G-conjugates 

of Q form the set of defect groups of B. 
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0.29 Theorem. Let G be p-solvable, I{ = Opl (G) and P E Sylp(G). 

Assume that <p E Irr(J\) is G-invariant and B E bl(O) covers {cpl. Set 

C = C J(( P) and letf.l =, <pp( ](, P) E Irr( C) be the Glauberman corre­

spondent of cpo Tlwn there is a unique block b of NG(P) covering {f.l}. 

Furthermore bC = B. 

Notes. By Theorem 0.28, B is the unique block of G covering {<p} and P 

is a defect group for B. Since P E Sylp( G), in' fact P is a defect group of 

every block of N c(P). In particular, b is the Brauer correspondent of B. 

Proof. By Theorem 0.15, CPc = Eli + pA for a (possibly zero) character A 

of C and a p'-integer E. For x E NG(P), <Pc = (cpX)c = €f.lx + pAX' and 

IL x = p. Thus fl. is i,nvariant inNG(P). 

Now Opl(Nc(P)) centralizes P and thus centralizes Oplp(G)jOpl(G). 

By Lemma 0.19; Opl(Nc(P)) ~ Oplp(G). Thus Opl(NG(P)) :::; Opl(G) n 
Cc(P) = Cg(P) = C. Hence C =.Opl(Nc(P)). Since f1 E rIT(C) is 

invariant in Nc(P), Theorem 0.28 show~ that there is a unique block b of 

N G(P) covering f.l. 

We need to show that bC = B. Observe that bC and bKNa(P) are de­

fined by Brauer's First Main Theorem. Tl~en (b[(Na(P))G.= bC (see [NT, 

Lenlma 5.3.4]). If 0' E Irr (bJ(Na(P)), then some irreducible constituellt 

of O'c lies in bC by [NT, Lemma 5.3.4}. Since 8 is G-invariant, i~ follows 

. that bJ(Na(P) covers {8} if and onliif bC covers {8} (i.e.b G = B). Now 

Oplp(G) ::; ]{Nc(P) and thus I( = Opl(]{Nc(P)). By Theorem 0.28, there 

is aunique block of J{NG(P) covering {8}. We may thus assume without 

loss of generality that G =,I{Nc(P). 

Since p E lIT (C) is invariant in N c( P) there ~xists ( E Irr (b) such that 

p t ((1). Write (G = A + L:xEIrr(GI8) axX for a (possibly zero) character A 

of G with [AJ(,B] = O. Since Irr(B) = Irr(G/B), we have bG = B if and only 



if p t LXElrr (GIO) axx(1) by [NT, Lemma 5.3.4]. But 

xEIrr (GIO) xEIrr (CIO) 

" () B(l)((l) [ C B] . o axX 1 = 1) It, 
xElrr(CIB) . fL( 

is a p'-number by Theorem 0.1? Hence bC :::'.: B .. o 

Let BE bi (G), so that Bcovers {fL} for some fL E Irr( Opl (G)). Theorem 

,0.29 describes the Brauer correspondent of B provided pis G-invariant. One 

loose end needs to be tied up: namely how the Brauer correspondence works 

. when p is not G-invariant, i.e. what is the relationship between the Brauer 

correspondence and the correspondence in L~mma 0.25. 

O~30 Corollary. S~ppose tbat l( ~ G, p t 11(1, and B E Irr (1(). Suppose' 

,B'E bl(G) covering {fJ} and I = Ic(B). CllOose D ~ I SUcll tbat Disa 

de/ect group [or Band letb E hI (N c(D)) be the Brauer c'arrespondent of 

"B: Set C = eK(D) and fL = Bp(1(,D). Tllen 

(i) b covers {It}; 

(ii) In Ne(D) = INa(D)(fL); 

'(iii) If Bo and bo are the unique blocks of I and InNe(D) (respectively) 

witb Bf = B and b~a(D) = b (see 0.25), t11Cn bb=Bo. 

Proof. (ii). By Theorem 0.15, Be = tp + pA with A E char (C) and ptE. 

If x E Nc(D), then BX is D-invariant, CX = C, and BX = tpx + pAx. So 

B,Xp(I(,D) = pX. Since p(1(,D) is 1-1, it follows that Ie(B) n Ne(D) = 

INd(D)(lt). 

(i), (iii): By indu~tion on IG : }(j. If, say, D =.1 then B = band B == p, 

whence the result is trivial. So we may assume that p IIG : }(I. 

Let b* E bi (InNe(D)) be the Brauer correspondent ofBo. Then (b*)1 = 

Bo and Bg; = B, whence (b*)e = B. Then (b*)Na(D) E bl(Ne(D)) 'and 

((b*)Na(D»)e = B (see [NT, Lt:mma 5.3.4]). 

Assume that I < G. The inductive hypothesis implies that b* covers {p}. 

By (ii) and Theorem' 0.28, (b*)Na(D) has D as a defect group and covers 

{p}. Since ((b*)Na(D»)e = Band D is a defect group of (b*)Na(D) 1 Brauer's 

First Main Theorem implies that (b*)Na (D) = b. Now the uniqueness of bo 

yields that bo = b*. In this, case, namely I < G, the result follows. Thus 

we assume t'hat I = G. Part (iii) is now trivial.' We need just show that b 

covers {p}. 

Let M = Opl(G). We may assume that M > I{, since otherwise (i) 

follows from Theorem' 0.29. We may choose (Y E Irr(.l\1) such that B covers 

{a}. By Lemma 0.25, Ie(a) contains a defect group for B. Replacing a by 

a G-conjugate, we may assume without loss of generality that D ~ Ie(a). 

Since B is G-invariant and Irr (B) ~ Irr (GIB), a E Irr( MIB). Because JIIJ ~ G 

and fJ, = Bp(I{,D), ap(M,D) E Irr(CM(D) I fL) (see Lemlna 0.16). By the 

inductive hypothesis, b ~overs {ap(M, D)}. Thus b covers {fJ,}. 0 

If G isp-solvable and cP E IBrp(G), the Fong-Swan Theorem asserts the 

~xistence of X 'E Irr (G) such that XO = cp. This is not true without the p­

solvability hypothesis. While indeed X may not be unique; Isaacs has shown 
. ° . there is a canonically defined set Y( G) ~ Irr (G) such that X 1---+, X IS a 

, bijection from Y( G) onto IBrp( G). We give below a reasonably short proof 

of the Fong-Swan theorem. This proof, somewhat in the flavor of Isaacs', 

forgoes uniquelless for the sake of brevity. The next lemma is taken from 

'(Is 4, Theorem 3.1]. 

0.31 Lenl111a. Suppose that GIN is a p'-group, It E Irr (N), pO E IBrp(N) 

.and Ie(fJ,) = Ic(fJ,°). Then X 1---+ XO dennes a bijection from Irr (GIfJ,) onto 

IBrp( GIfJ,°) .. 

Proof. We argue by induction on IGINl and let I = Ic(p),= Ie(fJ,°). If 
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I < G, the inductive hypothesis implies that 'f 1-+ 'fa is a bijection from 

Irr (1111) onto IBrp(II I1°). The Clifford correspondence then implies that 

'f 1-+ ('f0)G from Irr(Ilp) onto IBrp(GlllO). But 'IjJ 1-+ 1pG is a bijection from' 

Irr(III1) onto Irr(Glp) and ('Ij;G)O = ('Ij;0)G. The result follows in this case 

when I < G. vVe thus assume that p and/Lo .are G-invarial;t. 

Let X = In(Gllt) and Y = IBrp(GIILO). Write I1G = I:xEx axX' each 

ax > 0, and flOG = I:c,oEY bc,o<p, each bc,o > O. For X EX, (XO) N = 

(XN)O = axpo and thus XO = 2:c,oE'y dxc,o<p for non-negative dxc,oand at least 

one positive' dxc,o· Now Lc,oEY bc,o<p = (11 0 )G = (fJ,G)O = (L.:xEx axX)O = 

L.:xEx aX(L.:c,oEY dxc,o<p) =L.:c,oE1.·(:L xEx axdxc,o)<p, By linear independence, 

bc,o =, I:xEx axdxc,o for each <P E Y. 

By Frobenius reciprocity, (f.LG)N L axXN == I:·a~f.l and (pO)G N = 

(I1 G N)O = L.: a~/.l°· By Proposition 0.7, <P N = bc,of.tO for each <P E Y and so 

(110G) N = Lc,oEY bc,o<p N = I:c,oEY b~/.L°· Hence LXEX a~ = Lc,oEyb~. By 
the equality of the last paragraph 

2 L L (axdxc,o? (0.2) 
c,oEY xEX 

Each ax > 0, each dxc,o is a non-negative iriteger, and given X EX, some 

dxc,o 2: 1. Consequently, for each /3 EX, there is exactly one ,'E Y for 

which dp'Y = 1 while all other dpc,o are zero. In particular, XO E IBrp(GlfiO). 

Furthermore, we must have equality throughout (0.2). Hence for each <P E Y 

Since each ax > 0, at most one dxc,o t= O. Thus X 1-+ XO defines a 1-1 

map from X into Y. Now if XO = , E Y, t.hen axpo = X~ = ,N and 
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ax = br Since LXEX a~ = L<pEY b~, in fact IXI = IYI. This proves the 

lemma. o 

0.32 Theoreln. Suppose that G / N is p-solvable, B E Irr (N), BO = <p E 

IBr(N), and 10(B) = Io(cp). Assume also tilat p t o(B) B(l). If fl 'E 

IBr p( GI'<p), tllere exists 'f E Irr (GIB) such that 'fa = /3. 

Proof. By induction on IG : NI. Let 77 E IBr p(IG( <p )I<p) with 7]G = /3. 

, If I G ( <p) < G, tllen the inductive hypothesis implies that there does exist 

Ij E Irr(IG(<p) I B) with Ijo = 7]. Since IG(<p) = IG(B), indeed IjG E Irr(GIB) 

and (1j0)0 = (IjO)C = 7]c = fl. We are done in this case. So we can assume 

that <p and Bare G-invariant. 

Let M / N be a chief factor of G. Choose ( E IBr p (1Illcp) such that 1P E 

IBrp(GI(). Assume first that 1Il/N is a p'-group. By Lemma 0.31, there is 

'8, unique 0' E Irr(1Ille) such that 0'0 = (. Since IG(e) = IG(<p) = G, the 

uniqueness of a implies that Ic(O') = IG(O. Now aN = Bl + ... + Bt for 

not necessarily distinct Bj that are M-conjugate to B.!hen p 1 O(Bi) and 

(det B) N = (det B N) = n~=1 det( Bi) has p' -order. Since M / N is a pi-group, 

o( B) is a p' -number. Now the inductive hypothesis applies and there exists 

"'I E Irr(Gla) with ,0 = /3. Sin~e Irr(Gla) ~ Irr,(GIB), we are done in the 

case where Jv! / N is a p' -group. Since G / N is p-solvable, we have then that 

M / N is a p-group~ 

By Theorem 0.13, there is a unique extension 11 E hI' (111) of B satisfying 

p 1 0(11)· By uniqueness, IC(I1) = IG(e) = G. Now (11°)J..1 = (I1M)O = 

eO = <p is irreducible and thus /1
0 E IBrp(MI<p). By Corollary 0.27, {pO} = 

IBrp(MI<p) and so IC(~LO) = G, = 10(11). Now/3 E IBrp(GIt-L°) because 

{pO} = IBrp(MIO. The inductive hypothesis implies the existence of 'f E 

Irr(GII1) with lPO = /3. We are done because Irr(GIf.l) ~ Irr(GIB). 0 

By settihg N = 1 above, we get the usual form of the Fong-Swan Theo-

rem. 



0.33 Corollary. If <p E IBrp( G) and G is p-solvable, tbEm tbere exists 

,'Ij; E Irr (G) witll 'lj;0 = <po 

We close this section with a counting argument that will be used repeat­

edly. 

0.34 Lemlna. Let G be a Frobenius group witll Frobenius kernel I{ and 

,!complement H. Suppose V is anF[G]-module sucb tlla~ Cv(I() == 0 and 

;'char(F) t 11(1. If J ':S;H, tben dimCv(J) = IH : JldimCv(H). I1) 

particular dim(V) = IHI dim Cv(H). 

Proof. See [Is, Theorem 15.16]. The second statement is obtained by set-

,ting J = 1. 0 

Chapter I 

SOLVABLE SUBGROUPS OF LINEAR GROUPS 

§1 Quasi-Primitive Linear Groups 

An irreducible F[G]-module V is called imprimitive if V can be written 

V = V1EB" 'EB~l for n > 1 subspaces (not submodules) Vi that are permuted 

(transitively) by G. If H = stabG(Vd, then F ~ V1G(induced from H) 

(e.g. see [Is, Theorem 5.9]). We say V is primitive, if V is n9t imprimitive, 

or equivalently jf V is not induced from a submodule, of a proper subgroup 

of G. 

An irreducible G-module V is called quasi-primitive if V N is homogeneous 

for all N ~ G. It is a conseq~ence of Clifford's Theorem that a primitive 

module V is quasi-primitive. As would be expected, G is a quasi-primitive 

linear group if G has a faithful quasi-primitive module. In this case, every 

abelian normal subgroup of G is cyclic (by Lemma 0.5). This limits the 

structure of G and particularly that of the Fitting subgrQup F( G), as is 

described by a theorem of P. Hall [Hu, III, 13.10]. This section uses Hall's 

Theorem to give a thorough look at solvable quasi-primitive linear groups. 

At times, it is more convenient to weaken the quasi-primitive condition 

to VN homogeneous for all characteristic subgroups N of G., We then call V 

a pseudo-primitive G-module. In Section 10, we will see a 'pseudo-primitive 

but not quasi-primitive mo~ule for a solvable group G. In that example, 

IGI.= 32 .2 andlVI = 43
• 

The struc~ure of a quasi-primitive solvable linear group is a little cleaner 

when the underlying field is algebraically closed, but we still will study the 

, more general case because many of our applications will occur when the field 

is fini teo 
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1.1 Proposition. Let P be a dihedral, quaternion or semi-dihedra12-group 

witil IPI = 2" (n 2 3). Tilen 

(a) /P/{!?(P)I = 4 and /Z(P)I = 2; and 

(b) if P is not isomorphic to tlle quaternion group of order 8, then P 

has a characteristic cyclic subgroup of index 2. 

Proof. By definition, P has a cyclic subgroup A = (a) of index 2 and order 

2
n

-
1 with n at least 3 (3, 4 res~ectively). Now ~(P) ~ A and A/<I>(P) is 

elementary abelian. Since A = (a) is cyclic, (!?(P) is (a) or (~2). But P is 

not cyclic and so IP/<J!(P)I =1= 2. Hence <J!(P) = (a 2 ) has in:dex 4 in P. 

Now there exists yEP such that a Y = a j where j = -1 (-1, -1 + 
2n

-
2 respectively). Since A is abelian and IP: AI = 2, Z( P) ~ A. Direct 

cOlnputation shows that IZ(P)I = 2. If IPI ~ 16, then (a 2 ) 1: Z(P) and 

thus A =Cp((a 2
)) = Cp(<J!(P)) is a characteristic subgroup of P. If P is 

dihedral of order 8, then (a) is the unique cyclic subgroup of order 4. 0 

We let Qn, Dn and SDn denote the q"uaternion, dihedral and seml­

dihedral groups of ordern = 2m
, with m at least 3 (3, 4 respectively). . 

1.2 Theorem. Let P =1= 1 be a p-group witl1 every characteristic abelian 

subgroup cyclic. Let Z S Z(P) witll IZI = p. Then there exist E, T S P 
such that 

(i) P = ET, En T ~ Z and T = Cp(E); 

(ii) E is extra-special or E = Z; 

(iii) exp(E) = p or p = 2; . 

(iv) T is cyclic or p = 2, ITI > 16, and T is dihedral, quaternion or 
semi-dihedral; 

( v) There exists U d1l1racteristic in P SUdl that U S T, IT: UI ::; 2, 

U='CT(U) and U is cyclic; and 

(vi) EU = Cp(U) is characteristic in P .. 
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Proof. By P. Hall's Theorem ([Hu, III, 13.10]), t~lere exist E, T :s; P 

satisfying (i), (ii) and (iii). Furthermore Tis cyclic, dihedral, quaternion or 

semi-dihedral. Now, if ITI = 8 and T is non-abelian, then P = ET is extra­

special (see [Hu, III, 13:8]) a:nd the conclusion of the theorem is satisfied 

~ith P and Z playing the roles of E al1d T (respectively). Thus we assume 

that T is cyclic, or 16 IITI and T is quaternion, dihedral or semi-dihedral. If 

T is cyclic, we complete the theorem by letting U = T = Z( P). Assume T is 

not cyclic. By Proposition 1.1, there exists U characteristic in T such that 

IT: UI = 2, U = (u) is. cyclic, and <I>(T) = (u 2
). Since E is extra-special, 

<I>(E) = Z = Z(P) ::;(u 2
) = <J!(T) holds. Therefore,[E, T] = 1 implies that 

(1t 2
) = <I>(P) is characteristic in P. Since Z(T) < (u 2

), C?'(<I>(P)) = U a~Hl 

hence CT(U) = U. Thus Cp(U) = EU = Cp(<I>(P)) and U = Z(EU) arc 

characteristic in P. 0 

1.3 Corollary. Let P be a p-group with every abelian norm?!l subgroup: 

of P cyclic. Then P is cyclic, quaterlJion, dihedral or semi-dihedral. Also, 

P~D8. 

Proof. Assume not and let Z .:; Z(P) with IZI = p. By Theore.m'1.2, there 

exist E, T :s! Pwith E extraspecial, Z < E, T = Cp(E), Tn E = Z and 

T cyclic, dihedral, quaternion or semi-dihedral. Now lEI = p211+] for an 

integer n and there exists Z'~ A :s! E with A abelian of order pll+l (see 

[Hu, III, 13.7]). Since A S] P, A is cyclic. But the exponent of E is p or 4. 

Thus IAI = 4 and lEI .= 8. We may ~,ssume that P > E and thus T > Z. 

Then there exists Z S S S] T with S cyclic of order 4. Since S S] P a.rid 

S ~ Cp(A), AS is a normal abelian subgroup,·' which is not cyclic .. This 

contradiction completes the proof. o 

. Under the hypotheses of the above corollary, P has acyclic ~ubgroup of 

index p, as is proven in [Hu, III, 7.6], but this is a weaker conclusion. Satz 

I.14.9 of [Hu] lists all ]J-~roups with a cyclic maximal subgroup, but observe 

that the groups in (a.) and (b3) of that list have normal subgroups that are 

abelian but not cyclic. 
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, 1.4 Corolla~'y. Assume that every characteristic abelian subgroup of G is 

cyclic. Let, PI, ... ,PI be the distinct prime divisors of IFj for F = F( G) and 

let Z ~ Z(F) with IZI = PI .. , Pl. Tl~en there exist E, T ::=;' G such tlwt 

(i) F = ET, Z = E,nT and T = Cp(E). 

(ii) The Sylow subgroups of E are extra-special or cyclic of prime order. 
• I 

(iii) exp(E) 12pl .. ··PI. \ 
\ 

(iv) If a Sylow Pi-subgroup Ti of T is ~lOt cyclic, tilen Pi =:= 2, lTd ~ 16 

and T j is quaternion, dibedral or semi-dibedral. 

( v) Tbere exis ts U char,G wi til U cyclic,' U ::; T, U = C T ( U) and 

IT: UI::=; 2. 

(vi)' ED = Cf'(U) is characteri~tic in G. 

, (vii) If every characteristic abelian sl1bgTo~p of G is ill Z( F), tllen U = 
T= Z(F). 

Proof. Let PI"'" PI be the Sylow subgroups of F. For each i, write 

Pi = EiTi as in Theorem l.2. Set E =,TIiEi and T = TIiTj. Parts (i)-(vi) 

'now immediately follow. Furthermore, U is characteris'tic "in F and in G. ' 

Thus, for (vii), we have by hypothesis that U S; Z(F). Since IT: UI S; 2 

~nd U = CT(U), T = U = Z(F). 0 

vVc aSSUllle that G is solvable auJ is as in the above c;orollary. By a 

" theorem of Gaschiitz (see Theorem 1.12 below), F/iI!(G) = F(G/iI!(G)) is a 

completely reducible and faithful G / F-module. Suppose now that F S; G' 

and that ~very abelian characteristic subgroup A of G is cyclic. Since the 

automorphism g~oup of a ~yclic group is abelian, we have A S; Z( G') and 

A S; Z(F). By Corollary 1.4 (vii), U ~ T = Z(F), and iI!(C)Z/iI!(C) ~ 

Z/(iI!(C) n Z) is centralized by C'. Hence Gaschutz's Theorem ilnplies that 

, . :F/iI!( C)Z is a cOl1lpletelYr'educible and f~thful C' / F-module. 

1.5 Lenuna. Assurpe t11at Z ::; Z(E), Z is cyclic and E/Z abelian. Let 

,A S; Aut(E) w~th [E, A] S; Z and [Z, A] = 1. TIlen IAII fE/~I· 

'Proof. Fot a E A, define <Pa: EIZ -t Z by <Pct(Zx)=[x,a). Since [Z,A)=l 
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and [E,A]::; Z ::;Z(E),'CPa is well-defined and CPa E Hom(E/Z,Z); View 

Hom (E/Z, Z) as a group (with pointwise multiplication). Then a I-t CPa is 

a monomorphism of A into Hom (E/Z, Z), because A acts faithfully on E. 

It thus suffices to show that j:r-iOlll(E/Z,Z)1 I IE/ZI· 

Write E/Z = D} x··· X Dn for cyclic groups Di. Since Hom (E/Z, Z) ~ 

I1 Hom (Di,'Z), it will be sufficient to show that IHom (D j, Z)IIIDd. Since 

Di ~nd Z are both cyclic, IHom (D i , Z)I = (IDd, IZI). 0 

1.6 Corollary. Assume tilat Z ::; E ::; C, Z = Z(E) is cyclic and E/Z is 

abelian. Let A = Cc(Z), B = Cc(E) and C = CA(E/Z). Then Z = BnE 

and EB = C. 

Proof. Note that BnE = Z and so IEB/BI= IE/(BnE)1 = IE/Zl. The 

hypotheses imply that C / B acts tri:rially on both E / Z and Z, while acting 

faithfullyon E. Lemina 1.5 implies that IC/BI::; IE/ZI. But B::; EB::; C 

,and IEB/BI == IE/ZI. Thus EB = C. 0 

1.7 Corollary. Suppose that E / Z is abelian, Z is cyclic, Z S; F S; E and 

Z = Z(F) = Z(E).Then E/Z = F/Z x CE(F)/Z. 

Proof. Apply Corollary l.6 with E replacing G and F replacing E. o 

1.8 C.brollary. Suppose tilat E :::;! G, Z = Z(E) is cyclic and E/Z is 

abelian. AssUlne that whenever Z < D ::; E ~nd D :::;! C, then D is non­

abelian. ThenE/Z = EdZ x ... x En/Z for chief factors EdZ of G with 

Z = Z(Ei) for each i and Ei S; Co(Ej) for i f:. j. 

Proof. Let Z < D S; E with D ~ G. Since Z S; Z(D) :::;! G and ZeD) 

is abelian, ZeD) = Z-. By Corollary 1.7, E/:Z = D/Z X CE(D)/Z. By 

choosing D so that D / Z is a chief factor of G and by arguing via induction 

on IE/ZI, the conclusicm easily follows. 0 
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1.9 Theoreln. Assume that evelY abelian normal subgroup of G is cyclic: 

Let Pi-I be a normal p-sllbgroup of G. If p = 2, also assume that G is 

solvable. Let Z S Z(P) with IZI = p. T1Jen there exist E,T :g G sucl] that, 

(i) ET=P, EnT=Z andT=Cp(E); 

(ii) E is extra-special or E = Z; 

(iii) exp(E) = p or p = 2; 

(iv) T is cyclic, or p = 2 and T is dihedral, quaternion or semidihedral; 

(v) if T is not cyclic, then there exists U :g G withU cyclic, U S T, 

IT: UI = 2 and CT(U) = U; and 

(vi) if E > Z, tJlen EIZ = EdZx ... X EnlZ for clJieffactors EdZ of 

G and with Z= Z(Ei) for each i and Ei :::; Cc(Ej) for i f-). 

Proof. Assume that p is odd. By Theorem 1.2, there exist E, T S G 

satisfying (i) through (v). Since T = Z(P) and E = {x E P I xP = I}, we 

have E, T :g G. If Z < D S E and D :s1 G, then exp(D) = p and D is not 

cyclic. Thus D is not abelian. By Corollary 1.8, piut (vi) follows. We are 

done if p is odd. We thus assume that p = 2 and proceed by induction on 

IPI· 

By Theorem 1.2, P =FS where F is extra-special, FnS = Z, S is cyclic', 

or lSI :2: 16 and S is quaternion, dihedral or semi-dihedral. Furthermore, 

there exists U characteristic in P with U S S, U· cyclic, IS: UI S 2 and 

U = Cs(U). First assume that U < S. Now C p(U) = FU is a ~haracte~istic 

subgroup of P of index 2. Also rJ = Z(FU) is cyclic of order at least 8. 

The inductive hypothesis applied to FU :g G implies there exists an extra­

special subgroup E:g G (possibly E = Z) such that FU = EU, En U = Z 

'. and conclusion (vi) holds. Let T = Cp(E) :2: U. Since P 'centralizes 

FIZ'= FI(F n U) ~ FUIU f::! EIZ, Corollary 1.6 implies that ET =. P 

and En T = Z. Thus U is a cyclic subgroup of index 2 in T with lUI :2: 8. 

Since Z(P) = Z(F S) = Z, T is not cyclic and Theorem 1.~ implies that T 

is quaternion, dihedral or semi-dihedral. Also, T = C p( E) is normal in G. 

We are done if U < S. We hence assume tl:at u = S = Z(P) is cyclic. We 

also assume that F > Z. 
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Suppose that lSI :2: 8. Let V S Shave index"2 and set m = exp(V). 

Observe that FV = {x E P I xm ~ I} is a characteristic subgroup of P of 

index 2. The Inductive hypothesis applies to FV and we argue 'similarly to 

the last paragraph (in this case T = S =.Cp(E) = Z(P) is cyclic). Thus 

we may assume lSI s 4. 

Suppose that I SI= 2 and so P = F is extra-special. We may in this 

case assume. there exists Z < vV S P with VV :s1 G and W abelian, since 

otherwise the conclusion of the theorem is reached by setting E= F, T = Z 

and applying Corollary 1.8. Now W is cyclic and hence of order 4. Since 

Z = Z(P), IP: C p(W)\ = 2 and C peW) :s1 G; By the inductive hypothesis, 

there exists an extra-special group E ~ G (possibly E == Z) satisfying (vi) 

such that E1V = Cp(TV) and E n 1V = Z. Let T = Cp(E) :g G. By 

Corollary 1.6, ET = P and En T' = Z. Observe that IT: WI = 2 and 

T ~ Ds or Qs. We are done when lSI == 2 (with U = 1V). We hence assume 

that lSI = 4 = exp(P). 

'Let II IS be ~ chief factor of' G with H S P. Since exp(H) = 4 < IHI, 

H is not cyclic and thus II is non-abe~ianby the hypothesis. By Corollary 

1.8, PIS is a completely reducible G-module. Thus we have PIS = H d S x 

" . X H nl S for minimal normal subgroups Hi! S of GIS with S :::::: Z(Hd for 
) 

each i and Hi .S Cp(Hj) for i i- j. 

Assume there existEi:g G with Hi = SEi and Ei n S = Z. Then 

Z = Z(Ei) for each i, EiS Cp(Ej) for i i- j and EdZ ~ HdS is a chief 

factor of G. Let E = [L E i, so that EIZ f::! EdZ x ... x,E~/Z. Since E 

. is a cehtral product of the extra-special groups Ei, E is also extra-special. 

The conclusion of the theorem is then satisfied by setting l' = S. 

To complete the proof, we need just show there exists L :s1 G such that 
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:,LS = II and L n S = Z. Let A = Ca(S), so that IGIAI ~ 2. Let 

.', C. = C A (HIS) 2: P. Since HIS is a chief factor of G and a non-cyclic 

2-grollp, C < A. By Corollary 1.6, G = H . Cc(lI) and so C centralizes the 

abelian group HIZ. Let MIG be a chief factor of G with M :S' A. Since 

G is solvable, M I C is a q-group for some prime q. Since" HIS is a chief 

'.factOI~ of G, observe that CH/s(MIG) = 1 andq i= 2. We apply Fitting's 

,Lemma 0.6 to the coprime 'action of MIG on HjZ and obtain HIZ = 
[HjZ, MIG) x CH/z(MjG) = [HjZ, MIG) x SjZ. Set LjZ = [HIZ,' lvIIC] 
to complete the proof. . 0 

1.10 Corollary.' Suppose G i= 1 is solvable and every normal abelian sub­

group of G is cyclic. Let F = F( G) and let Z be the socle of tlw cyclic 

group Z(F). Set A'=.Ca(Z). Then there e'xist E, T ~ G with 

(i) F = E'J', Z = EnT and T = CF(E). 

(ii) A Sylow q-subgroup of Eis cyclic ~f order q or extra-special of ' 

exponent q or 4. , 

(iii) EjZ = Ei/Z x ... x EnjZ fo~ dlief factors EdZ of G with Ei ~ 
Ca(Ej) for i i= j. 

(iv) For each i, Z(Ej) = Z,IEi/ZI = p;ni for a prime[h and an integer 

ni, and Ei= Op; (Z)·Fi for an extra-special group Fi = 0Pi (Ei):9' G 
of order ]J~ni+l. 

(v) There exists U :S T of index at most 2 with U cyclic, U ~ G and' 

Cr(U) = U. 

(vi) G is nilpotent if and only if G = T. 

(vii) T = Ca(E) and F = CA(EjZ). 

(viii) EjZ ~ FIT is acompl~tely reducible GjF-module and faithful 

, Aj F -module (possibly of mixed dlaract~ristic). 

(ix) AICA(EdZ):S Sp( 2n i,Pi). 

(x) If every normal abelian subgroup oiG is central inF, then T = Z(F) 

is cyclic. 

. Proof. Part::> (i)-(v) follow from Theorem 1.9. To prove (vi), we assume 

that G is nilpotent and show that G = T. Since G is nilpotent, G = F( G) = 

F = ET. Since T ~ Cc(E), every subgroup of E/Z 'is nor:mal in G jZ~ If 

Ei/Z is a chief factor of G with Ei :S E, then IEdZI is a prime andEi 

is abelian, contradicting (iv). Thus E = Z and by (i), T = F = G. This 

proves (vi). 

Let B = Ca(E) ~ A and G = CA(EjZ). Since CF(E) = T, we have 

BF ~ C and Corollary J.6 yields G = EB = FB. To establish (vii) it thus 

suffices to show that B = T. Assume not and let XIT, be a: chief factor 

of G with X ~ B. Now X i F, since otherwise Z < X n E ~ Z(E), a 

contradiction. As X jT is an r-group for a prime r, we write X = T R for 

R E Sylr(X), Since X is not nilpotent and T is, we may choose a prime 

q i= l' and Q E Sylq(T) with [Q, R] i= 1. If, on the one hand, q = 2, then 

(v) ensures ~he existence of a cyclic subgroup U ~ 9 with IQ: UI = 2 n.,nd 

U ~ G. Therefore, R has to centralize Q., If q > 2, then R centralizes 

the socle of the cyclic group Q, because R :::; B ~ Ca(Z). Since r i= q, 

R:S Ca(Q). Part (vii) follows from this contradiction. 

Theorem 1.9 implies that E I Z is completely redticible as a G-module and 

hence also as an A-module. Part (viii) now follows from (vii). 

N ow Ed Z has a non-degenerate symplectic form ( , ) over G F(Pi); namely 

the com~nutator map (xZ, yZ) = [x, y], with Ei = Op;(Z) identified as 

. GF(Pi) (see [Hu, III, 13.7 (b)]). This form is preserved by A = Cc(Z) and 

part (ix) follows. 

Let U be a cyclic subgroup of T of index at most 2 with U ~ G. By 

hypothesi's' (x); U ~ Z(F) and T is abelian~ Thus T = Z(F) .is cyclic, This 

completes the proof of the corollary. o 

Note that the additional hypothesis of (x) is sati~fied provided that F ~ 

G'. Moreover, whe~l A = G in Corollary 1.10, we see below that E / Z, has 

a complement,IIjZ in GIZ satisfying Cc(E) ~ H.' SinceT = Ca(E), it 

the'n follows that FIT is complemented in G jT· as well. 
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1.11 Lenlnla. Suppose that Z ~'E j G, Z = Z(E) is cyclic and centred 

in G, and EIZ = Et/Z x ···x EmlZ for chief factors EilZ of G. Assume 

that G is solvable and Ei ~ Cc(Ej) if and only if i =I- j. Then there exists 

H ~ G witl] Ell = G, EnH = Z and Ca(E)::; H. 

Proof. We argue by iriduction on IEIZI. The result is trivial when E = Z 

and we thus assume that m ~ 1. We let G = Ca(E) and B = CG(EIZ). 

Since Z ::; Z(G), Corollary 1.6 yields B = EG and EnG = Z. In particular, 

B Ie 3: EIZ as G-modules. 

~irst suppose that 'IT! = 1. Then E I Z is a faithful irreducible G IB­

module. Since Z = Z( E), IE I Z I is not prime and so B' < G. Let !vI I B be 

a chief factor of G. Then M IBis a p-group for a prinle p, and furthermore 

pf /EIZ/ = IBIGI· Thus if PIG E Syl]J(MIC), then BP= M and Bnp = 

C. Now CEjz(PIZ) = CEjz(lvIIB) = 1, becau,se EIZ 3: BIC is a faithful 

irreducible G I B-module and ],,11 B ~ G / B. The Frat tini argument ilnplies 

that G = AI· Na(PIC).Setting J= Na(P/C),' we have that 

EJ = E(GPJ) = (EG)PJ = BPJ::;: lvI J = G. 

Since EIZ is abelian; En J :Sl EJ = G. Thus En J is Z or E. In the lq,tter 

case, G = .J = Nc(PIC) a.nd PIG :Sl GIC, whence PIC and IYIIE act 

tri vial1y on B I C ~ E I Z, a, contradiction. Thus En J = Z and the result 

follows ill this case by setting H = J~ We may assume that rri > 1. 

By the last paragraph, there exists J ::; G satisfying E 1,J = G, ElnJ = Z 

and CO(E1 ) ::; J. In p~rticular, E2··· Em ::; J. Obsel:ve that each EdZ 

(i > 1) is even a chief factor in J, because E1 . J = G and [E1' Ei] = l. 

Setting F = E2 ... Em" the inductive hypothesis applied to J implies that 

there exists H ~ J such that FH = J, H n F= Z and CAF) ~ II. Now 

En II = E n J n H = (E1 F n .1) n H = (E1 n J) . F n H = F n H = Z, and 
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Related to Lernma 1.11 is a' theoren:l due to Gaschiitz, which has frequent 

nse later 'in the text. Recall that the Frattini subgroup ~(G) is a normal 

nilpotent subgroup of G. , 

1.12' Theorem (Gaschiitz). Let G be solvable. Tl1en 

F(GI<J?(G)) = F(G)/<J?(G) 

is a completely reducible a.nd faithful G /F( G)-module (possibly of mixed 

ch~racteristic). Fllrthehnore, G jiJ?( G) splits over F( G)j~( G). 

Proof. See [Hu, III,~ 4.2, 4.4 and 4.5]., o 

§2 Senli-Linear and Snlall Linear Groups 

VVe begin this, section with semi-linear and affine semi-linear groups. 

These grottps play an important role in the study of solVa:ble linear groups 

and solvable pernlutation groups (e.g. see Theorem 2.1 and the paragraph 

following it). Vie conClude the section by characterizing solvable irreducible' 

subgroups of G L( n, q) for small values of qn. In' between, some standard 

arguments in representation theory are presented. In many of these argu­

ments, we require that the uriclerlying field has positive cha.racteristic or is 

algebraically closed in order to guarantee trivial Schur,indices (see Proposi­

tion 0.4). 

',' 

Let V be the Galois field GF(qm) for a prime power q. Of course V is 

a vector s~ace over GF(q) of ,dimension m. Fix a E V \ {OJ = V#, w E V 

and (J' E 9 := Gal(GF(qm)/GF(q)); We define a mapping 

T: V -t V by, T(x) = ax U + w. 

Thel~ T is a permutation on V and T is trivial if and only if a = 1, (J' = 1 

and w = O. Thus we have the following subgroups of Sym (V): 

(i) A(V) = {x ~ x + 11) I 'tV E V} consistingof translations., 



(ii) The semi-linear' grolLp 

reV) = {x f-:-+ ax U I a E GF(q}Il)#, cr'E O}. 
(iii) The subgroup r o(V) = {XH ax I a E 9~} of r(V), consisting of 

multi plications. 

(iv) The affine semi-linear group 

ArCV) = {x r-+ ax U + w I a E GF(qn1)#, cr E 0, tv E V}. 

Clearly, A(V) acts regularly on V and A(V) = V as vector spaces over. 

GF(q). ' Now both A(V) and V are r(V)-modules, where reV) acts on 

'A(V) by conjugation and on V by semi-liriear mappings. Hence, as is easily 

,checked, A(V) ~ v:- as GF(q)[f(V)]-modules. Observe that reV) and even 

To(V) act transitively on the non-zero elements of A(V) and V. In fact, 

, AJ;"'(V) is the semi-direct product of A(V) and r(V) (and is isol1lOrphic to 

'~the sem~-direct product of V and reV)). Also f(V) is a point-stabilizer (for 

zero) ill the doubly transitive permutatioll group Ar(V). 'Note tl~at ro(V) 

is cyclic of orcler qTll - 1 and f(V)/ro(V) = 0 is cyclic of order n~. If cr E 0 
has order n, then JCv(cr)1 = ICA(v)(cr)1 = qTll/n andICro(v)(cr)1 = qm/n_1. 

We will also write f( q77l) for reV), etc.. Our notation is different from 

that in [Hu; II, 1.18(d)], where f is used to denote what we call Af. Observe 

that e.g. f(8 2
) and f(4 3

) are distinct 'proper subgroupsof f(2 6 ). For the 

most part, we will assume that the base field G F( q) is the prime field, 

Theorern 2.1 will turn out to be critical for many topics in this book. 

2.1 Theoren1. Suppose tl1at G acts faitllfully on a G F( q )-vector space V 

of order qTll, q a primepower. Assume that G ha~ a normal aben~n subgroup 

A for which VA is irreducible. Then G may be identined as a subgroup of 

r(qn1) (i.e. tlle ]Joints of V may'be labelled as tlle elements of GF(qln) in 

such a way dl;:tt G ~ f(q!ll)) and A ~ fo(qTll). 

Proof. Let D = EndA(V). By Schur's Lemma, D is a division ring. Since 

V is finite, D is finite and hence a field. Now A ~ Cc(A) ~ D#. Thus 

CeCA) is a cyclic normal subgroup of G. vVithout loss o~ generality, ~e may 

assume that A = Cc(A). 

Since every D-invariant subspace of V is also A-invariant, V is un irre­

ducible D-vector space, i.e. dimD(V) =' 1. In particular, D ~ ,G F( qTll). In 

orde~ to label the points of V by the elements of D, we fix some w E V#. 

We' then identify v E V with the unique dE' D such that v = wd. For 

f ED, the vector vf corresponds to df, and so scalar multiplication on V 

agrees with field multiplication in D. Since A ~ D, A ~ ro(qTll) follows. 

Let 9 E G. We wish to show that 9 E f( qm). Let b := 19 E D#, i.e. 

b corr~sponcls to tug E V#. Then h:= gb- 1 E'GL(m,q) and lh = 1. 

Since b-1 E fo(qm), it suffices to show that h E f(qffi). As A :S) G and 

D# = C;L(v)(A), D# is G-illvarimit and thus (h)-invariant. Now D# = (a) 

for some a, because D# is cyclic. Let h -.1 ah = am for some m E Z, so that 

h-1aih =aim for all i. It suHices to show tha.t It E Gal(GF(qm)/GF(q)) ~ 

r(qn1). Certainly, h acts GF(q)-linearly. Let x, y E D#, say x = at and 

y = as,. Because Ih = 1, we have that 

Likewise, yh = asm and (xy)h = a(s+t)11l = (xh)(yh),' This shows that h is 

'a field automorphism of GF(q11l). . 0 

Alternatively~ Theorem 2.1 follows from [Hu, II, 3.11] with oS = l., 
, , 

Suppos~ that H is a primitive solvable permutation group,on a finite set 

n with point stabilizer H Q (a En). Then H has a uniqtie minimal normal 

subgroup M, H = M· II co M n H Q = 1,' C H(M) = M,and M acts regularly 

on n. Consequently, Inl = IMI = pTll is a prime power. , Moreover the 

mapping 1n r-+ am (m E M) is ~n H a permutatio~ isomorphism between 

1\1[ and nj here H Q acts on !vI by con-jugation. We may consider H as 

a subgroup of the ,affine linear group AGL(1n;p), where 1\1 is the normal 

subgroup consisting ;f all translations (see II, 2.2, II; 3.2 and II, 3.5 of [Hu]). 

In particular, H is doubly transitive if and only if H Q acts transitively on 
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111#. (More will be said about ~olvable doubly transitive permutation groups 

in §6.) 

Suppose that II a has a normal abelian subgroup A that acts irreducibly 

on lvI. As a consequence of Theorem 2.1, the points of nand M (re­

spectively) may be labelled as the elements of GF(pm) in such a way that 

Ha ~ r(pnt), A ~ ro(pnt), and hence H .~ Ar(pnt) (cf. also [Hu, II, 3.12)). 

If V is a finite faithful GF(q)-module for a group G such that G may be 

identified as a subgroup. of f(V) (i.e. after a labelling of the points of V), we 

will write G :s f(V). This may be a little sloppy, but of course this will 0~11y 

be done when there has been no previous labelling of the points of V. Note 

that reV) of course depends on a particular labelling. We will combine the' 

last theorem and the next lemma in a conveIlient corollary. 

2.2 Lenuna. Let V be a faitllful irreducible F[GJ-module, and let A be a 

normal abelian self-centralizing subgroup of G such that VA is homogeneous. 

If char(F) "f 0 or F i~ algebraically closed, tllen VA is irrecjucible. 

If in partinzlar G is solvahle, F := F( G) is ;ti)clian and V F homogeneous, 

then V F is irreducible. 

Proof. Since VA is homogeneous and A is abelian, A is in fact cyclic. Write 

VA = e VV for a faithful irreducible F[AJ-module Wand e E N. Our aim is 

to show that e = 1. 

Let JC he an algebraically closed extension of F, with JC = F should 

char(F) = O. Now V ®:F K = VI EB ... EB Vt and W ®.r JC = vVl EB ... EB 

Ws for distinct absolutely. irreducible G-modules Vi an,d distinct absolutely 

irreducible A-modules lVj (see Proposition 0.4). In particular, 

Since WI is a faithful absolutely irreducible module for the cyclic group 

A and since CG(A) = A, IG(W1 ) = A. Hence HlP is an irreducible 

G-moclule by Clifford's Theorem (see Theorem 0.1). Also,.lV1 has' s~W 1 = 
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IG : AI G-conjugates. Without loss of generality, the G-conjugates ofvV1 

are WI, ... ,lV/. We may also assume that M!l
G = ';1. Therefore, lVy = VI . 

for 1:S j:S 1, and since dim1C(V1) = 1.dim1C(vVt), (V1)A = 1V1 EB ... EB lV/. 

Likewise, if Wk is a constituent of (Vi)A, vVp = Vi· Thus IV] is not a 

constituent of (Vi)A for i 2::·2. Hence e = 1. 

The supplement follows since Co(F) ~ F in solvable groups G. 0 

2.3 Corollary. SUPP5,Jse that V is a. faithful irreducibleGF(q)[GJ-module 

for a solvable group G and a prime power q. Let F := F( G). 

( a) If F is abelian a.nd V F is lwmogeneous, tllCll G ::; r( V). 

(b) If V is quasi-primitive and ~, = T (T as in Cor. 1.10), tllen G~ 

reV). 

Proof. (a) By Lemma 2.2, YF is irreducible and so Theorem 2.1 implies 

that G ::;. f(V). 
(b) We adopt the notation of Corollary 1.10 which applies to. G because 

V is quasi-primitive. Since b; our hypothesis ElF = FIT = I, part (viii) 

of Corollary 1.10 implies that Co(Z) ~. A =. F = T. Now Z :s U,and 

consequently U = Cr(U) = Co(U),'by Corollary 1.10 (v). Since U is 

cyclic, Lemma 2.2 and Theorem 2.1 yield G S r(V).' 0 

2.4 Lemlna.· Let F be a group witl] center Z. Suppose that V is a faithful 

irreducible F[F]-module where F is a field t11at lIas positive cllaracteristic or 

is algebraically closed. Assume that c;har(F) t IFI· Let W be an irred_ucible 

. Z -submocIule of 11. Then dimF(V) = te . dimF(W) for integers. t and e, 

witll e= X(I) fora faitllful irreducible ordinary character X of F. 

Proof. Since Z = Z(F), Clifford's Theorem implies that Vz ~ J . W for 

an integer f. Let K., be a Galois extens~on of :F such that )C contains an 

IFlth root of unit.y. If F is algebraically closed, we choose.F = K. Then all 



irreducible K:[P]- and K[Z]-representations are absolutely irreducible. Now 

for absolutely irreducible JC[FJ-modul~s Vi that are the distinct Galois con­

jugates of Vl , i.e. the Vi afford JC-representa-tions Xi of F that are conjugate' 

under the Galois group Gal(K.:IF) and {Xl,":' ,XI} form an orbit (see 

Proposition 0.4). Similarly, 

for absolutely irreducible JC[Z]-modules Wj, whose representations form an 

orbit under Gal(JCI F). Now 

For each i, (1(i)Z has a unique Wj as a constituent, because Z. = Z(F). 

If an element of Gal (JCIF) maps vVl to_ IVj, then it must map the set 

{Vk I (Vdz ~. vVl EB ... EB Wd to the set {Vi I (Vi)z ~ Wj EB '" EB Wj}. 

Thus the number of distinct Vi for which a given vVj is a constituent in 

. ' (Vi) Z is lis (i.e. the number is independent of the particular choice of j). 

, In particular, s I z.. Since the vVj are absolutely irreducible modules for 

the abelian group Z, dimJC(vVj) = 1 for all j. Observe that V} is a 'faithful ' 

JC[F]-module, because V was assumed to be a faithful F[F]-module. Since 

char (JC) f IFI, dimJC(V1 ) ~ X(I) for a,faithful X E Ir1' (F). Now 

'dim:F(V) = dimx:(V 0:F J() = I . dirriJC(Vd = I· X(I) 

and 

~im:F(W) = dimJC(W 0:F JC) = s . dimJC(vVt) = s. 

Thus 

dim:F(V) = (il s) . X(l) . dim:F(W). 

Set t = I Is E N to complete the proof. o 

2.5 Corollary. Let V be a faithful irreducible F[G]-module [or a field F. 

If char (F) =0, assume that F is algebraically closed. Supp~se that p,:g G 

and P is a nOll-abelian p-group. Then p I dim:F(V), 

Proof. Because Qp( G) of: 1, P f char (F). Now Vp = VI EB .. ·EB Vn for 

irreducible P-modules Vi such that PICp(Vi ) ~ PjCp(Vj) for all i! j. 

Since n'j C P(Vi) = 1 and P is non-~belian, each P jC P(Vi) is non-abelian. 

By Lemma 2.4, p I dim.F(Vd for all i and so p I dim.F(V), 0 

The next result, which again is a consequence of Lemma 2.4, applies 

t~ the Fitting subgroup of quasi- and pseudo-primitive linear groups (c{ 

Corollaries 1.4 and 1.10). 

2.6 Corollary. Assume that H = EU where U = Z(H) is cyclic, Un E = 
Z(E), E is nilpotent and the Sylow subgroups of E are extra-special or . . , 

of prime order. Let V be 'a: faithful irreducible F[H]-module a.nd vV a.n 

irreducible submodule ofVu. If char (F) = 0, assume that F is algebraically 

closed. Then dim.F(Vj = e· dim.F(vV) with e2 = \H: U\ . 

Proof. Fii'st observe that char(F) f \H\. Sin~e E is a direct pr~duct of 

extra-special groups and groups of prime order, !H lUI = \EjZ(E)1 = e 2 for 

an integer e and eachfaithful t.p E Irr{E) has degree e (see [Hu, V, 16. 14]). 

Since U = Z(H) and H = EU, every cp E Irr (E) is H-invariant. But HIE 

even is cyclic and so every X E Irr(H!cp) extends cp (see Proposition 0.11). 

'In particular, if X is faithful, so iscP and X(l) = cp(l) = e = IH : UI 1
/

2
. By 

Lemma 2.4 and its proof, 

dim.F(V) = et . dim.F(W) 

where t is the number of irreducible non-isomorphic constituents of V 0:F J( 

whose restrictIon to U = Z( H) is a multiple of a fixed irreducible constituent 

TV} of IIV0.FJ(. Recall'that all irredtlcible constituents of V0.FK.: and IV0.FK 

are absolutely irreducible. 
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Let X v = e . ). for a faithful), E Irr (U). By [Is, Exercise 6.3], which is 

restated below as Proposition 12.3, Ir~(HI).) = {X}. Thus t = 1. 0 

2.7,Exanlple. Let C -I- 1 be a cyclic group and assume that the prime 

power q is coprime to ICI. Let I be the smalle~t positive integer such that 

IGII ql_l. Then every faithful irreducible GF(q)[C]-module has dimension 
I. 

Proof. Let V be a faithful irreducible GF(q)[C]-module. Every C-orbit on 

V# has size ICI. Thus ICIIIVI- 1. Set Ilfl = qk. Since qk == 1 (~od ICI), 

I I k. 

Let K = GF(ql). Then V 0CF(q) K= VI EB '" EB V t f~Jr distinct ir-

reducible K[e]-modules Vi that are afforded by representations which are 

Galois conjugate under Gal(lCjGF(q)) (see Proposition 0.4). Hence't ::::; 

[IC: GF(q)] = I. Since IC contains a primitive jCl th root of unity, every irre­

ducible IC[C)-representation is absolutely irreducible and thus dimK(Vi) = 1 

for each i. Hence k = dimGF.(q)(V) t . dimK(VI )' = t ;5: I ::::; k and 
dimGP(q)(V) = 1. o 

The next lemma gives some strllcture about imprimitive linear groups. 

vVhat then follows is information about "small" linear groups. Often, with, ' 

solvable groups, ad hoc argum~nts are needed to handle "small" cases. We 

collect some information for later use. There is some overlap' with what 

appears in Suprunenko's book [Su), but our approach is slightly different. 

. Suppose -that U is a faithful irreducible H-moclule for a group II f- 1 and 

L that S is a transitive subgroup of the synuuetric group Sn(n > 1). Then 

un := U + ... + U is a faithful irreducible module for the wreathprocluct 

}Iwr S. Also, un is a.n imprimitive (H WI' 5)'-moclule. 

2.8 Lenuna. Lei; V be a faithful irreducible F[G]-tnodule and suppose 

V = VI EB· .. ' EB Vn (n > 1) is a system of imprimitivity for G. Let,: G ----t Sn 

be the homol11orphism illdl1ced by tbe permutation action of G OJ] the Vi. 
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Set 5 = ,(G), which is a transitive subgroup .of, 5 n • Let finally H = 

NG(V1)jCC(V1). Then G is isomorpilicto a subgroup of HwrS as linear 

groups. 

Note. The conclusion is stronger than just G ::::; H wr S. But rather G 
, '. 

as a linear group on V is isomorphic to a subgroup M of the linear group 

, H wr S on Vt. It is the stronger form that we desire. Note further that then 

G ~ Aut(V1 )wr Sn as a liriear group. 

Proof. Fix a basis BI for VI, let r = dim(VI ) and I =N c(Vd. For x E I, 

let ... Y(x) be the matrix afforded by x relative to B 1• Thus 

X: I ----t 'G L( 7') :F) 

is a representation of I with kernel Cc(Vi). Let I{ = ,{X(x) I x E I} so 

that I( ~ GL(r, F) and ]{ ~ I/CC(V1 ) = H. 

Consider the following subsets of G L(i'n, F}: 

I k; E J{ ~ GL(r,F) I 
and N the set of those matrices obtained by applying a "block-preserving" 

permutation of the columns of an element of M by an element of s E S ::::; Sn­

By choosing an appropriate basis for Vt, we have a representation 

'Z: H wrS -7 N 

that is faithful and onto. Furthermore, H, wr Sand N are isomorphic a.s 

linear groups. Thus, we intend to show that G is isomorphic as a linear 

group to a subgroup of N. 

Since G transitively permutes VI,'" , Vn , we may choose a complete set 

{gl = 1, g2,'" , gn} of coset representatives of I in G with V1gj =Vj. We 

extend Bl to a basis, B of V by B = Bl U BIg2 U ... U BIgn . We let Y be 

the representation afforded by G relat.ive to B so that 

Y: G ----t GL(rn,F) 



• , •• I J • ~. !. l I • I .; + I . • I • '. 

is faithful. It suffices to show that Y(g) E N for all 9 E G. 

Fix g E G. For each i, there exists hi E I stIch that gig = higj, where 

J = i .,(g) .. Now the matrix 

is in A1 and Y(g) is the matrix obtained by a "block-preserving" permutation 

s = ,(g) E S to the columns of C. Thus Y(g) E N. 0 

If V is an imprimitive irreducible faithful G-module, then V is induced 

from an irreducible module W of a maximal subgroup H of G. Then 

where S is a .p~imitive pennutat,ion group on t := Ie.: HI letters. In fact, 

S = Gjcoreo(H). The maximality forces H to be No(W). 

2.9 Lenlnla. Suppose tlwt H ~ G and V is a faitllful F[G]-module that 

is irreducible a.s an F[H]-module. Assume tllat char(F) I- 0 or F is alge­

braically closed. Then Co(H) is cyclic. 

Proof. .. Without loss of generality, G == H . Co(H) and H :SJ G. Let !C be 

an algepraically closed extension of F, with !C = F should char(F) = O. 

It again follows that 

, . for non-isomorphic absolutely irreducible faithful !C[G) niodules Vi (see Pro­

positi~m 0.4). Likewise, 

for non-isomorphic absolutely irreducible faithful !C[HJ-modules vVi . Since 

VU®:F!C = (V®:FJC)Il, we have that (V1)H is a direct sum of non-isomorphic 

absolutely irreducible !C[H]-modules that are G-conjugate. Because G = 

Ii . Co(H), each Wi is G-"invariant. Thus (Vdli is an absolutely irreducible 

!C[H]-module and Schur's Lemma yields 

!C = EndJC[H](Vd = CEnd(Vt)(H). 

'.Therefore, Co(H) is isomorphic to a finite subgroup of the multiplicative 

group of the field !C. Hence Co(H) is cyclic. 0 

2.10 Lemma. Suppose that V is a faithful quasi-primitive F[G]-module 

for a solvable group G and. a finite field F. Corollary 1.10 applies and we 

let E, T, Z and F = F(G) be as in that Corollary. Set e2 = IEjZI. Tllen 

(i) If dim:F(V) = .e . dim:F(W) for an i;Teducible Z -submodule llV of V, 

then T = Z(F) = Co(E) and T is cyclic. 

(ii) Suppose that E i= Z. Hence there exists 1 i= D :SJ G such that E = 

D Z and all Sylow subgroups of D are extra-special. If dim:F(V) = e· 

di1n:F(Y) for an irredu'cible Z(D)-sllbmodule Y of V, then T = Z(F) 

and DjZ(D) ~ EjZ ~ FjT is'a faithful completely redllcibleGjF-

. module. 

(iii) If dimF(V) = e, thenT ~ Z(GL(V)) and FIT ~ EjZ is a fai"thful 

completely reducible G IF-module .. 

(iv) If dim:F(V) is a prime, then dim:F(V) = e or G ~ r(V). 

Proof. We shall freely use the assertions of Corollary 1.10. 

(i) Let Va be an irreducible E-submodule of V. Since V is quasi-primitive, 

VE ~ Va EB· .. EB Va, and Corollary 2.6 yields dim:F(Vo) = e· dim:F(W), Thus 

VE is irreducible.' Applying Lemma 2.9, Ca(E) is a cyclic normal subgroup 

of G and thus CG(E) = Cp(E) = T. Since F. = ET, it follows that 

T = Z(F) = Co(E) is cyclic. 

(ii) Observe that IDjZ(D)1 = IEjZI = e2
. Hence the same argument as 

in (i) shows that VD is irreducible. Sin~e F = DT, repeating the arguments 
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in (1) yields that T = Z(F) = Ce(D). Let 13 = Ce(Z(D)). By Lemma 

1.5, ICB(D/Z(D))ITI divides IDIZ(D)I = IFIT!. But F S CB(D/Z(D)) 

and so F = C B(D /Z(D)). Set C = Ce(D IZ(D)). Then C n B = F and 

elF acts faithfully on ZeD). Assume that F < C and choose Q E Sylq(C) 

for a prime divisor q of IC I Fl. Then there exists a Sylow p-subgroup P of 

D such that [Z(P), QJ =I 1. In particular we have p =I q, since otherwi~e 

Z(P) ::; Z(Q). Note that Z(P) = cp(P) and Q centralizes Plcp(P), because 

Q ::; C. But the~ [P, Q] = 1, a contradiction. Thus F = e and .GIF 
acts faithfully on D/Z(D) s= E/Z s= FIT . . That the actiOli is completely 

reducible follows from Corollary 1.10. 

(iii) Assume now th~,t dim.F(V) = e. Recall that dim.F(Vo) = e :cliln.F(W) 

for an irreducible E-submodule Vo of V'. By (i), VE is irreducible an(i 

T = Z(F) is cyclic. Since E ::; F) also VF is irreducible. Let X be an 

irreducible T-submodule of V.We again apply Corollary 2.6 and obtain 

e = dim.F(V) = e . dim.FC..r). 

Thus dim.F(X) = 1, and since,VT s= X EB··· ill X, T acts 'on V by F­

scalar multiples of the identity. This implies T ~ Z(GL(V))j in particular, 

Z::; T ~ Z(G) and part (iii) follows from CorQllary l.10. 

(iv) Assume that dim.F(V) is a prime. Since e I dim.F(V), we may as­

sume that e = 1 and hence that F = T. Then G ::; f( V) by Corollary 

2.3(b). 0 

By Corollary 2.6, the hypothesis on dimensions in Lemma 2.10 (ii) wiil 

be satisfied if V D is irreducible. 

2.11 Theorem. Let G be a solvable irreducible subgroup of GL(2, q); q a 

prime power. Tllen dI( G) S 4 and one of the following occurs: 

(a) G S Zq-lWr Z2; 

(b) G~r(q2);or 

(c) F(G) =QT where Q8 s= Q ~ G, T = Z(F(G)) = Z(C) is cyclic, 
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T ~ Z(GL(2, q)), Tn Q = Z(Q) ~nd G/F(G) s= ZJ or 6 3 . Also 

q =1 2. 

If G is qua.si-primitive, tllen (b) or ( c) must occur. 

Proof. Suppose that the underlying module V is. not primitive. Since 

· dimeF(q) V = 2,. Lemma 2.8 yields that G S Zq-l wr Z2 and dI( G) ::; 2. 

Tl~us, by Clifford's Theorem, we may assume that G is quasi-primitive. Let 

A :S1 G with A abelian. If VA is irreducible, then G S f( q2), by Theorem 

2.1, and S'O dI( G) s 2. We may thus assume that VA s= VoEB Vo for a 1-

dimensional A-module Vo. Hence .every abelian normal subgroup A of G is 

cyclic of order dividing q - 1, and central even in GL(2, q). For the rest of 

the proof we will as well assume that G i r( q2). 

We now apply Corollary 1.10 and let E, T, Z and F = F(G) be as in that 

· Corollary; in particular, E, T :S1 G, F = ET and En T = Z. By Lemma 

2.10 (iv), 2 = diIllGF(q)(V) = IE: Z\1/2, and hence Lemma 2.10 (iii) implies 

that T::; Z(GL(2,q)) and that E/Z isa faithful completely reducible G/F­

module. Then clearly T = Z( F)= Z( G) is cyclic. Since the order of each 

irreducible constitueI?t of E/Z is a sq~are and since IEIZ\ = 4,' EIZ is 

irreducible and thus G I F s= Z3 or S3. Now E = Q X Z2' for an extra­

special group Q :S1 G of order 8 and T n Q = Z( Q). ,Since Q admits an 

automorphism of order 3, in fact Q s= Q8 (see Proposition 1.1 (b)) and the 

theorem follows, b'ecat;se dl( G) ~ 4 and Og( G) =1. . 0 

If we replace 2 above by an odd prime, the same arguments apply. Fur- ' 

thermore, we can use the above theorem to describe G IF( G). Much of the 

reason to include 2.11,2.12 and the rest of this section is to avoid repetitious 

'ad hoc arguments later. 

"l 

2.12 Theorenl. Let G be a. solvable irreducible subgroup of GL(p, q) for 

· a prime P' and a prime power q. Then dl(G) ~ 6 and one of tlJe following 

occurs: 
i' 



(b) G ~ f(q]')j or 

(c) F(G) = DT for an extra-special group D S). G witlI IDI = p3, T 

is cyclic with T ~ Z(GL(p, q)), Tn D = Z(D),' and D /Z(D) is a 

faithful irreducible G IF( G)-module of order p2. Also q 1= 2 and 

GIF(G) ~ Sp(2,p) = SL(2,p). (Note (hat Theorem 2.11 applies to 

the action ofGIF(G) 011 DIZ(D).) 

If G is quasi-primitive, conclu~ioll (b) or (c ) must occur. 

. Proof. If the underlying module V is not quasi-primitive, then we may 

, choose G S) G maximal such that Ve i's not homogeneous. Thus GIG faith­

'fully and primitively permutes the homogeneous components VI, ... , Vm of 

Ve, rn > 1 (see Proposition 0.2). Since dimcF(q)(V) = p isa prime, m,= p 

anddimcF(q)(ViY = 1. Note that G 1= 1 and so q' = IVil # 2. We apply 

Lemrria 2.8andob~ain that G ~ Zq_lwr(GIG). Since GIG is a solvab!e 

primitive pernlutation group on p letters, Zp ::; GIG::; Zp . Zp-l ::; Sp (see 

[Hu, II, 3.6]). Conclusion (a) and dl( G) ~ 3 hold now al~d we thus assume 

that V is quasi-primitive: 

Let A ~ G with A abelian. By Theorem 2.1, we may assume that VA 

'is not il~reducible, because otherwise' G'::; f(qP) and dl( G) ,::; 2. Since 

"dimcF(q)(V) = p is a prime; we have that VA ~ p . U for an irreducible A- ' 

module'U and dimcF(q)(U) = 1. Therefore every normal abelian subgroup 

A of G is cyclic of order dividing q - I, and is central even in GL(p, q). In 

. , particular, q 1= 2. 

To finish the p~oof we may assume that G i f( qP) arid we proceed as in 

Theorem 2.11. Thus we apply Corollary 1.10 and Lemma 2.10, and there ' 

e~istE, T, Z and F = F(G) such tha~ E, T ~ G, F = ET, EnT = Z, p = 

,dimcF(q)(V) = IEIZI 1
/
2, T::; ,Z(GL(p,q)) and EIZ is a faithful completely 

, reducible G IF-module. Furthermore, there exists an extra-special group 

, D ~ G of order p3 such that E ~ D X ipl and D n T = Z(D). Also the 

order of each irreducible constituent of E / Z ~ n,/Z( D) is a square, and 

since /D/Z(D)j = p2, GIF,acts faithfully, irreducibly and symplectically 

,on D IZ( D). As Theorem 2.11 applies to this action, we conclude that 

.. ' I' 

dl( G) ::; dl(F) + dl( G I F)::; 2 + 4 = 6 and ,~he proof is complete. o 

2.13 Corollary. Let G be a solvable irreducible subgroup of GL(p, q) for 

primes p cll1d q. 

(a) Ifq = 2, then G::; f(2P ). 

(b) If q =' p, then G ::; f(pP) or G < Zp-l wr S wl1ere Zp < S < 

Zp . Zp-l ::; Sp' 

Proof. Assertion (a) follows directly from Theorem 2.12. To prove asser­

tio~ (b), note that Op( G) = 1 and hence case (c) of 2.12'cannot hold. 0 

2.14 Theoreln. Let G be a solvable irreducible subgl~oup of G L(pr, 2) 

where p and l' are 'primes not necessarily distinct.. After possibly inter­

changipg p and r, one of the following occurs: 

(a) G::; f(2P )wr S wl1ere Zr ::; S = Zr . Zr-l ::; Srlt.. 

(b) G::; f(2pr); or 

(c) F(G) = DT with D, T ~ G, T = Z(F(G)) is cyclic, D is extra­

special of order p3, F(G)/T ~ DIZ(D) is a faithful irreducible 

G IF( G)-module of order p2. Furthermore, 'ITII 2r - 1 and p 1= 2. 

In all cases, dl( in ~ 6. If G is quasi-primitive, then (b) or (c) must occur . 

. , 

. Pr~of. Let V be the corresporiding module of order 2pr
• If V is not quasi-

'primitive, choose G ~ G maximal such that Vc is not homogeneous and 

write Ve = VI EB .. , EB VI for I > 1 homogeneous components Vi of Ve· 

Since G i= 1, IVil i= 2' and 1 <' dimcF(2)(Vi). Since p and r are primes 

and I . dimCF(2)(Vi) = pr, we may assume without loss of generality that 

dimcF(2)(VJ = p and I = r. Now 'GIG faithfully and primitively per­

mutes the Vi and hence GIG is 'isomorphic to a transitive subgroup of 
. C 

Zr' Zr-l ::; Sr (see [Hu, II, 3.6]). If I = N c(V1 ), then V ~ VI and V1 is an 

irr~ducible I-module, by Clifford's Theorem. Thus Corollary 2.13 applies, 
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and I/CO(V1 ) s r(2P ). By Lemma 2.8, conclusion (a) holds and dl( G) S 4. 

We thus assume that G is quasi-primitive and ,also that G i r(2pr). 

By Corollary 2.3, F =' F( G) is non-abelian. Since char (V) = 2, F 

has odd order. Also, every normal abelian subgroup of G is cyclic and so 

T := Z( F) is a proper cyclic subgroup of F. By Corollaries 1.10 and 2.6, 

IF/TI = e2 
for an integer e> 1 dividing dimoF(2)(V)/ dimoF(2)(TV), where 

W is an irreducible T-submodule of V. Since T =1= 1 and char (V) = 2, 

dimoF(2)(lV) > 1. But dimoF(2)(V) = pr and we may assume without loss 

of generality that dimoF(2)(W) = rand e = p. In particular, ITII 2r -1 and 

IF/TI = p2. Now Coroilary 1.10 implies that there exists ~.n extra-special 

group D 2:J G with IDI'= p3; F = DT and D/Z(D) ~ F/T an irreducible 

G-module. By Cor~llary 2.6, p = ID /Z(D)ll/2 I dimoF(2)(V)/ dimoF(2)(Y) , 

for an irreducible Z(D)-module Y of V. Since ZeD) =1= l,lYI #- 2 and 

dimoF(2)(Y) > 1. Thus dimoF(2)(Y) = 7' and 

~pply Lemma 2.10 (ii) to obtain the faithful action of G / F on F /T. Finally 

observe ,that dl( G) :::; 6 follows from Theorem 2.11. 0 

I 

2.15 Corollary. Let G be a solvable irreducible subgroup of GL(2n, 2) 

with a prime number n. Then one of the following occurs: 

(a) G:::; r(2n)wr Z2, or G S S3W~' S 'where Zn :::; S :::; Zn' ZIl-l S Sni 

(b) GSr(221l);or 

(c) n == 3, F( G) is extra-spe"cial of ord~r 33 , F( G)/Z(F( G» is a faithful 

irreducible G /F( G)-module and IG /F( G)I is even, dividing 48. 

If G is quasi-primitive, conclusion (b) or (c ) must occur. 

Proof. Theorem 2.14 applies with pl' = 2n. Conclusions (a) and (b) above 

are exactly those in that, theorem. We may assume that conclusion (c) 

of Theorem: 2.14 h~lds. Because 02(G) = 1, we have that p = nand 

r = 2. Then p and ITI divide 3, whenc~ F( G) is ~xtra-special of order 33 . 
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Since F(G)/Z(F(G» is a faithful irreducible G/F(G)-mo'dule of order 3 2 

and IGL(2, 3)1 = 48, 211G IF( G)I anellG IF( G)I\48. 0 

The final result we need about small solvable linear groups is rather 

technical. 

2.16 Lemnla. Let G be a solvable irreducible subgroup of GL(2n, q) suell 

tilat GIG I is a p-group for distinct primes p and q, and SUell that G I #- 1 is 

a pi ~gro'up. Tllen 

(i) qn =1= 2, 22 , 24 or 3. 

(ii) If qn = 23
, tIlen IGI = 32 ·7 and p = 3. 

(iii) If q)~ = 25
, tilen p = 5 = IG: Gil and IG'I :::; 25 .35 . 

(iv) If qll = 32
, then p = 2 and IG'I = 5, or p = 5 = IG: G'I and G' is 

extra-special of order 25 • 

(v) If q1l = 33
, then p = 2 and IG'I divides 32 .132 or 7· 13~ 

(vi) Ifn=l, thenp=2,orp=3andG'~Q8. 

P~oof. Of course Oq( G) = 1 and so ~he hypothese~ imply that Ore G) =1= 1 for 

sonie prime r ~{p, q} . Using Theorem 2.11, conclusion (vi) easily follows. 

Since I G I is di visible' by at leas t two primes distinct' from q, q n =1= 2 or 3. 

For the proof of (i)-(v), we thus, assume that q = 2 and 2 :::; n ::; 5, or q = 3 

and 2 :::; n :::; 3. 

Suppose now that ,the corresponding G-module V is not quasi-primitive. 

Choose G ~ G maximal such that Va is not homogeneous an~ write Va = 

U1 ffi··· ffi Urn for ,homogeneous COlTIpOnents Ui of Va. By Proposition 0.2, 

G/G faithfully and primitively permutes the Ui , and so GIG is a solvable 

primitive permutation group on, m ,letters .. Note that m I 2n and thus' 

2 :::; in :::; ,10. For the structure of a solvable primitive permutation group, 

cf. the comments following Theorem 2.1; in particular, m is a prime power. 

There are limited possibilities for G IC. In each case, p is determined by the 

fact that (G IC)/( G I c)' is a p-group. Since p =1= q and r11 I 2n, w~ have one 
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of the following cases: 

rn GIG p qn IUil 
2 Z2 2 32 or 33 32 or 33 

3 Z3 3 23 22 

3 S3 2 33 32 

4 A4 3 22 or 24 2 or 22 

4 S4 2 32 3 

5 Z5 5 25 22 

5 DlO or F20 2 no possibility 

8 ? ? 24 2 

vVe immediately rule out' the cases where IUd = 2, since then, C = 1" a 

contradiction. Next suppose {p, q} = {2, 3}. In' all such cases, GIG is a 

{2,3}-group. Thus IGI must be divisible by T (1' ~ 5), and so there exists a 

solvable irreducible subgroup H S; GL(Ui ) with r' IIHI and G S; HwrG IG. 
This only occurs in the case IUd = 33, qn = 33 and p = 2 = m. Then 

H S; f(3 3
) (cf. Corollary 2.13), G S; f(3 3)wrZ2 and 'conclusion (v) holds. 

The remailiing case iS,when m = 5 = p = IGIGI and IUd = 2'2. Then 

G S; S3wr Z5 a~ld conclusion (iii) holds. We can thus assume that V is 

quasi-primi tive. 

For now) assume that, G i r( q2n). If qll = 23 ' or, 25
, then Corol­

lary 2.15 (c) implies that G is a {2,3}-group, contradicting Or(G) /= i. 
Since V is quasi-primitive, Corollary 1.10 applies and we adopt the notation 

(F, T, U, A, Z) there. Set e2 = IP/TI. We may assume that e > 1, since oth­

erwise G. S; f(V) by Corollary 2.3 (b L By Corollary 2.6,' e I dim(V) = 2rt. 
Since e IIFI, q does nqt divide e. Hence qll I:: 22

, 24. The only remaining 

values now are qll = 32 and 33. If W is an irreducible U -submodule of V, 

then e I dim(V)j dim(vV) and IUIIIWI, - 1. Thus we have 

qll e IWI 
33 . 2 3 Or 33 

32 2 3 or 32 

4 3. 

When e; = 4, then lUI = 2, and so T U' = Z :::; Z(G). Also F is ' 

extra-special of order 25. Since P i= q' = 3 and21IF(G')1, p,~ 5. As 
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A = G, the Sylow p-subgroup of GjF must act symplectically on FjZ. Now 

ISp( 4,2)1 = 24 .32 ·5, and therefore p = 5 = IPI, where P E Sy15( G). Since 

P and GjF act irreducibly on FjZ, Corollary 2.15 yields that GIF:::; f(24). 

The hypotheses easily imply that IG I FI = 5, and conclusion (iv) holds. 

Next assume that e = 2 and recall that q = ~.Now IZI I lUI, and lUI 
divides 26 or 8. Since G/A ,S; Aut (Z), since p /= 3 and since GIG' is a 

p-group, we must have that G I A is a 2-group. Also AI F acts faithfully on 

FIT of order 22. Consequently, A/F ~ S3 orZ3, and it follows that p = 2. 

By our hypotheses, G has an ~be1iall Sylow 2-subgroup. F however has 

a non-abelian Sylow 2-subgroup, a contr~diction. This rules out the case 

e = 2. 

Hence we finally assume that G :::; f( q2n). Since G' i= 1, we have that 

1/= GI(Ghfo'(q21l)) :::; f(q2Tl)jf o(q211) andp must divide 2n. This rules out 

qll= 22 and 24. vVhen q1l = 25
, thenp = 5 =IG: G'I and IG'I :::; If o(210)1 :::; 

2
5 

. 35) as desired. If ql1 = 32
' or 33, then certainly p = 2. Conclusions (iv) 

and,(v) follow, since G' is a 2'-group. 

What remains is that 911 =,2 3 and p = 3. Now f(2 6 ) has a non-abelian 

Sylow 3-subgroup of order 27. Since a Sylow 3-subgroup of ,G is abelirui, 

, 3
3 t IGI· To reach conclusion (ii) we may assume that G is non-abelian of 

order 3· 7. In characteristic 2, G has two absolutely irreducible faithful repre­

sentations, both of degree 3. But G ~ f(2 3) has ~ faithful representation of 

degree 3 over GF(2), which must be absolutely irreducibl~. Thus G has two 

faithful irreducible representatiOns over GF(2) of degree 3, none of degree 

6. Thus G cannot act irreducibly 'on V. This completes the proof. 0 

§3 Bounds for the. Order and the Derived Length of 

Linear Groups 

Let q be ~ prime. While the orders of GL(n, q) and its Sylow q-subgroups' 

are well-known (namely exponential functions of qll), the order of a solva,bIe 
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irreducible subgroup is considerably smaller. The Sylow q-subgroup e.g. 

cannot aCt completely reducibly. B~cause a chief factor of a solvable group 

G gives rise to a representation .of G over a finite field, bounding the o:;-der L "of a completely reducible subgroup of G L( n, q) proves to be a useful tdol 

on several occasions in this book. In :fact, we give a cubic bound q3n for 

solvable groups G. But we start first with nilpotent linear groups. We let ~ 

and 9J1 denote the sets of Fermat and M ersenne primes (respectively). The 

notation (2,~) will denote th~ set of ordered pairs (2, q), q E J. 

We close this section by giving logarithmic bounds for the derived length 

of .solvable subgroups of Sn and solvable completely reducible subgroups of 

GL(n,F) (for arbitrary fields 'F). 

3.1 Proposition. Suppose qn - 1 = pm for primes p" and q arid positive 

integers m and n. Then 

(i) n = 1, q E ~ and p = 2; · 

(ii) m:= 1,"p E 9J1 and q = 2; or 

(iii) n = 2, m = q = 3 and p = 2. 

Proof. This 18 well-known and" not difficult. For a proof, see [HB? IX, 

2.7]. o 

3.2 Proposition. Suppose that qm - 1 = 2n 
; 3 for a prime q and positive 

integers m and n. Then 

(i)m = 1; or 

(ii) m = 2 and q E {5,7}. 

Proof. Assume that m > 1 and observe that q is odd. Let t = 1 + q + ... + 
qm-l so that t I 2n ·3. If m" is odd',. then t is odd and so t = 3 and q = 2. 

This is a contradiCtion and hence we write m=2k for an integer k. Then 

2n .3 = (qk ..!...l)(qk + 1). Since 4 f (qk -1, qk + l),since 2 i qk ± 1 and q is 

odd, it follows that 6 = qk ± 1. Hence m = 2k = 2 and q is 5 or 7. 0 

.. ~' 
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We now turn to nilpotent linear groups over finite fields. We set f3 = 

log(32)/log(9) and no£ethat 3/2 < 1.57 < f3 < 1.58 < 8/5. 

3.3 Theorenl. Let V i= 0 be a faitl:lful, completely r~ducible and finite 

G-modlliefor a nilpotent group G. Let char (y) = q > O. Then. 

(a) IGI::; IVIf3/2; 
(b) IGI ::; IVI/2 proviged that G is a p-grollp and (p, q) ~ (9)1,2)0(2, J)U 

{2,7}. . . 

Proof. We w~rk by induction on IGI IVI. If V ~ VI EB ... EB Vm for non­

zero G-modules Vi and m. ?:: 2, the inductive hypothesis implies that if 

Gi = C e (1Ii), then IG/Gd ::; IVd f3 /2, and in part (b) that IG/Gd ::; IVd/2 
for i = 1, .. '.' m. Since ni C i = 1, G is isomorphic to a subgroup of 

G/G l ,x ... >< G/Cm . Then 

i 

Similarly for par:t (b), we have IGI S;IVI/~m S; IVl/2. Thus we may assume 

that V is an irreducible G-module .. 

If G is not quasi-primitive, it follows from Corollary 0.3 that there exist's 

G ~ Gof prime index p with Vc = VI ED·· 'EB"V;) for irreducible G-modules Vi, 
The argument in the last paragraph applied to C shows that IGI S; IVIf3 /2P • 

Thus IGI ::; plVI f3 /2P • Since2 x
-

I ?:: x for all x ~ 2, IGI S; IVIf3 /2. Sim~larly 
for pad (b), we have IGI ::; pIVI/2P ::; IVI/2. Thus we may asSume that V 
is quasi-primitive. 

Every normal abelian subgroup of G is cyclic. Since G is nilpotent, Corol­

lary 1.3 implies that G = S x T where T is cyclic ~f odd order and S 1S a, 

2-group that is cyc~ic, dihedral, quaternion or semi-dihedral. In particular, 

G has a cyclic normal subgr~up U of index at most 2. If U has k orbits on 

V#, then IVI-l = k·IUI becallse Vu is homogeneous. Since x3 / 2 -2x+2 ~ 0 

for all x ~ 2, we have that lUI S; IVI - 1 S; 1111 3 / 2 /2 S; IVIf3/2. 
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To prove (a), ~e assume that IG:UI = 2. Since x 3
/
2 - 4x +42: 0 for all 

,'x 2 16, it follows that eit,her /V/ < 16, or 

IG,I ~ 21UI ~ 2(IVI- 1) ~'IVI3/2j2 ~ IVIP /2. 

·It remains to consider that IVI < 16, G is not cyclic and IVI is odd. But 

'then IVI = 32 aild a nilpotent subgroup of GL(2,3) has order at ,rnost 

16.= IVIP /2. This proves (a). 

In case (b) ~e assume that G is ~ p-group, lUI = pHand IVI = qm. Now 

, IVI - 1 = klUI. If k = 1 ~r if k = p = 2, it follows from Proposition 3.1 

that (p, q) E (2, J) U (9)1,2)., Thus k 2: 2. If U = G, then IGI = lUI ~ IVI/2. 
If k 2: 4, then IGI ~ 21UI ~ IVI/2. The o~ly possibility then is k = 3 and 

IG: UI = 2 = p. Thus qm - 1 = IVI- 1 = 31UI = 3· 2n. By Proposition 3:2, 

. q E: {5,'7} or ni = 1., The hypotheses of (b) imply that m = 1. But then G 

'is cyclic and G = U, a contradiction. 0 

3.;4 Corollary. Assume that G is a group of order paqb for primes p and q 

and a, bEN. 

(a) If pa > qbP /2, then Ope G) =I- 1. 

(b) If pa > qb /2 and (pl'q) ~ (9)1,2) U (2, J) U (2, 7), then Op( G) =I- 1. 

. Proo[ Assume that Op( G) = 1. By Burnside's "well-known" paqb -Theo-- . 

, reIn ([Hu, V, 7.3]), G is solvable. Hence Oq(G) =1-1 and F(G) = Oq(G) =: Q. 
Then P E Sylp( G) acts faithf~lly on Q and thus on Q / ~(Q), bec~use p =I- q. 

Since .Q / ~(Q) is a completely reducible and faithful P-module, Theorem' 

3.3(a) yields IPI ~ IQ/<»(Q)IP /2 ~ qbP /2. This proves part (a). Part (b) 

follows analogously from Theorem 3.3(b). 0 

Part (b) is often referred to as BUI:nside's ((other"paqb-Theorem, although , 

Burnside omitted (p,'q) i= (2,7), which is necessary because 223 IIGL(8, 7)1· 
Observe that both (a) and (b ) are equivalent to number theoretical state­

ments abot~t prime power divisors of (qH - 1) ... (q -1). Coates, Dwan unJ 
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Rose [CDR] ~ corrected Burnside's proof by giving a number theoreticaJ ar­

gument for (b). A group theoretical proof of both ( a)" and (b) appeared in 

[Wo 4], as did Theorem 3.5 ( a), (b) below. The group theoretical approach 

is much shorter. 

We let Q = (3.1og(48)+log(24))/(3 .. log(9)), i.e. 90 = 48.(24)1/3. Observe 

, that 11/5 < 2.24 < Q < 2.25 = 9/4. We also let A = (24)1/3 = 2.3 1/ 3 < 3. 

3.5 Theorem. Let V -=I- 0 be a faitlJ[ul, completely reducible a.nd finite 

G-module for a solvable group G. Set char (V) ~ q > O. 

(a) Then IGI ~ IVlo/ A. 

(b) If 2 t IGI or H3t IGI, then IGI .~ IVI2 / A. 

(c), If 2 f IGI ,~nd q =I- 2, tllenlGI ~ IV1 3 / 2 / A . 

Proof. We proceed by induction on IGI"IVI. 

Step 1. We may assume that V is irreducible. 

Proof. If not, write V =, VI EEl· •. EEl Vm for irreducible G-modules Vi and set 

Ci = CC(Vi). Then ni Ci = Cc(V) = 1 and G is ,isomorphic to a subgroup 

of X'iG/Ci, whence IGI ~ IIIG/Gil. Then the inductive hypothesis for (a) 

implies that IG/Gd ~ IViio r\ and hence IGI ~ IVlo / Am S; IVlo / A. Parts 

(b) and ( c) follow similarly in this case. 

Step 2. We may assume that V is quasi-primitive. 

Proof. If not, we choose N :s1 G maximal such that V N is not homogeneous 

and write VN = U1 EEl··· EEl Urn for the homogeneous co~ponents Uj of VN. 
Then G/N faith~ully and primitively permutes Ul , ... , Um (see Proposition 

0.2). Let M/N be a chief factor of C. Then IM/NI = nL and A1/N is a 

faithful irreducible G / M-module (d. the comments about primitive permu­

tation groups following Theorem 2.1). Using the inductive hypothesis and 
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the argument in Step 1, we have 

and that 

Thus 

if 21lGI or 3 1lGI) 
if 2 f IGI and q =I- 2 

I 
(ma+l / A m) . IVla / A 

IGI::; (m3 
/ Am) . IVI2 

/ A, 

(m3 
/ Am) . IV13

/
2 

/ A, 

if 2 f IGI or 3 f IGI 

if 2 f IGI and q =I- 2. 

Sec. 3 

(3.1) 

Since 3 < 0' + 1 < 10/3, we may assume that m iO
/

3 > Am, i.e. m iO > 
(24) m. Thus 2 ::; m ::; 5. On the other ~land, it suffices via inequality 

(3.1) to show that IG/NI ::; Am-I. If m = 2, 3 or 5., then G/N is a· 

solvable primitive permutation group of prime degree and [Hu, II, 3.6] yields 

G/N ::; Zm . Zm-l ~ Sm. Consequently, IG/NI ~ m(m - 1) ::; Am-I. If 

m = 4, then G / N ~ S4 and I G / N I ::; 24 = A 3. This step is complete. 

Step 3. Set IVI = qn. We may then assume that n ~ 2 and qll ~ 16. 

Proof. First assume that 'I V I = q. Then 

IGL(V)I = q - 1 ::; q2/3 ::; \V12 / A, 

yielding ( a) and (b). To prove (c) in this case, we ~ssume that q > 2 and let 

S E Ha1l2/(GL(V)): Now lSI::; q/2::; q3/2/3::; IVI 3
/

2
/,\, and we are done 

if IVI = q. 

. If IVI = 4, then IGL(V)I ~ 6 ::; 411
/

5 i3 ::; IVla / A, and each Sylow 

subgroup of G L(V) has order at most 3 ::; IVI 2 
/ A. If IVl = 8, then Corollary 

2.13(a) implies that IGI ::; 21::; IVI 2 
/ A. We may thus assume that IVl = g. 

Then IGL(V)I = 48 = galA = Pil a/,,\. Furthermore, a Hall 2'-subgroup 
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i 

of GL(V) has order 3 ~ IV1 3
/

2 I A, and a Hall 3"-~ubgroup has order 24 ::; 
92/3 ::; IVI 2 / A. This step is proven. 

Step 4. We may assume that 

(i) G i f(qn)j 

(ii) n > 3; 

(iii) if q = 2, then n ~ 8. 

'Proof. (i) Suppose that G ::; f(ql1). Then IGI < nqn. To prove (a) and 

(b), ';'e can· assume that nq ri > q2 n I A and thus 3n > q n ~ 2 n. This can 

only' happen when q = 2 and n ::; 3. But we handled these cases in Step 3. 

To prove (c) here, we assume that nqll > q3n/2 / A and thus 3,n > qn/2. By 

Step 3, n > 1 and so it follows that ql1 == 32, 52, 33 or 34 . A Ha1l2'-subgroup 

S of f( q1l) has order 1, 3, 39 or 5 (respectively) and lSI ::; q3n/2/3. This 

yields (i). 

(ii) Recall that n ~ 2. Suppose that n = 2 or 3. Since V is quasi-primitive 

and G i f(qn), it follows from Theorem 2.12 that G has noniml subgroups 

F = F(G) and T = Z(F) such that jTllq ~ 1, FIT is elementary abelian of 

order n2, and F/Tis a faithful irreducible symplectic GIF-modul~. \iVhen 

n = 3, note that IG / FI must be even. Thus in both cases n ~ 2 and n = 3 , 
IGI is even and part (c) vacllously holds. When n = 2, q ~ 5 by Step 3, a~ld 

When' 11 = 3, then 

IGI = ITIIFITIIGIFI.~ (q -1)·9: 24 ~ 216· q. 

. We have that q f. 2 by Step 3. Furthermore q =I- 3, because 03( G) f. 1. 

Tlius 216 ::; 55 /3 ::; q5 /3 a.nd IGI ::; IVI 2 
/ A . 

(iii) We now assume that q = 2, 4::; n::; 7 and G i f(q,l1). By Corollary 

2.13, n is no~ a prime. Since V is.-,quasi-prirhitive, Corollary 2.15 implies 

that n = 6 and IGj ::; 33 ·48::; 2 12/3 ::; I l/f I A. This completes Step 4. 



Step 5.- Conclusion. 

., Proof. Since V is quasi-primitive, we may apply Corollary 1.10 to conclude 

there exist normal subgroups F = F(G), .z,U, T, E and A witl~ Z = 

socle (U) = Z(E), U cyclic, IT: UI'S; ,2, U = CT(U), F = ET and En T = 
Z. Furthermore, F :::; A = Ca(Z) and EIZ ~ FIT is a completely reducible 

and faithful AI F-module of order e 2 for an integer e. Since V is quasi-

" primitiye, VEU is a direct sum of t ~ I1somorphi'c faithful irreducible EU­
Inodul~s. By Corollary 2.6, it follows that Vu ~ te· VV where W is a faithful 

irreducible U-module. Note that IUIIIWI-I. By Step 4(i) and Corollary' 

2.3, e ~ 2. 

Since A = Ca(Z) and Ziscyclic, IGIAI S; IZI ~ lUI. If T > U, then 

IT: UI = 2, IZI is even and IGIAI S; IZI/2 S; IU1/2. In all cases, 

If e = 2, then IGI is even and 

IGI = IGIAIITIIAIFIIFITI S; IUI2 ~ 6·4 S; 24 ·IVI S; IV12/3, 

since IV I ~ 81 by Step 4 (ii), (iii) .. Sl;lOuld e = 3, then 3 I IFI and q =1= 3. 
Also by Step 4, IVI ~ 256. Since IF ITI = 32, Corollary 1.10 implies that 

FIT is an irreducible 'GIF-module. Thus 2 I IGIFI and 6 I IGI. Now 

IVI = IWI 3t ~ IUl 3 an~ 

IGI = IGIAIITIIAI FIIF/TI S; IUI2_. 48· 9 S; 432·IVI 2
/

3 ~ IV1 2 /3, 

since IVI ~ 256. We may assume in the following that e ~ 4. 

Because FIT is a faithful completely reducible AI F-module of order 

e 2 > 1 the inductive hypothesis implies that , , 

! 
e2crj).. 

IAI FI S;. e
4 I).. if 3 f IGI 

, e
3 I).. if 2f IGI· 

Since lUI < IWI and IG IAIITI S; IUI 2, it follows that 

! 
e2cr+2 . IWI 2 j).. 

IGI ~ c6 
• /TY12 1,\ if 3 t IGI 

e 5 
. 1 vV 12 / ).. if 2 t 1 G I. 

Recall that IVI = IWlle. 

To prove (c), we assume that IGIIVI is odd and e5 1WI 2 > IV1 3 / 2 ~ 
IvVI 3e/2. Then e lO > IWI 3e-4. Because lUI IIWI - 1 and IUllvVI is odd, it 

follows that IvVI ~ 7 and e IO > 73e
-

4
• This implies e < 5, a contradiction,' 

because e is odd and e ~ 4. Part (c) follows. 

vVe ,now prove (a) and- (b). If (b) is false, then e 6 1vVI2 > IWI2le and 

e3 > IvVl le - I
. (3.2) 

If (a) is false, then e2cr+21vV1 2 > IWllw, and so e2+(2/cr) ,> IWl le-(2/a). 
Since a' > 2, inequality (3.2) a~so holds in this case. Since lUI I IWI - 1, 

we ha~e that IWI .~ 3 and e
3 

). 3e
-

1
. Thus e S; 5. If e' = 5, then 5 I lUI 

, and IvVI ~ 11. Now (3.2) gives a contradiction and hence e = 4. Then, 

2 I lUI and inequality (3.2) implies that IWI = 3, t = 1 and IVI = 34 • 

Now T =' U = Z has order 2 and F is extra-special of order 25 • Since 

A =CG(Z) = G, FIZ is a faithful completely reducibleGIF-module. By 

C~rollary 1.10,FIZ is irreducible or the' direct sum of two irreducible GIF-, 
f 

modules of order 22, Thus IGIEI divides 60 or 72 (see Corollary 2.15). If 

IG I PI ~ 60, then lGI S; 60 . 25 ~ 37 = IVI2/3 S; IVI2 I A. Thus IG I FI = 72, 

, 6 IIG!, and IGI = 72.25 S; (34 )11/5 13 -S; IVla I A. 0, 

3.6 Corollary. Let G be a solvable primitive permutation group all tile 

. finite set n. Then IGI S; (Inlcr+1)1).. S; (InI13/~)/2. 

Proof. Let M be a minimal normal subgroup ~f G. Then 1M/ = 1.0/ and 

GIM acts faithfully on Af(cf. the comments following Theorem 2.1). By 

Theorem 3.5, 

I' 
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and the assertion follows, since a < 9/4 and A > 2. o 

Repeating some of Step 5 _above, we have: 

3.7 Corollary. Assume tllat every normal abelian subgroup ofG iscyclic. 

Vj'ith tile notation of Corollary 1.10, we have IGI ~ e13 /2 IUI 2 /2., 

Proof. By Corollary 1.10, G has a normal series 

G ~ A ~ F ~ T ~ U ~ Z, 

where U is cyclic, Z = socle (U), ITIUI ~ 2 and A = Cc(Z). Then IGIArs: 
IZI ~ lUI. If IT/UI = 2', then IZI is even and IG/AI ~ IZI/2. In all cases, 

IG/AIITI ~ IUI2
. Since F/T has order e2 and is a completely reducible 

and faithful A/ F-module, Theorem '3.5 implies that IA/ FI ~ (e 2)9/4 /2.' 

Consequently, IGI = IG / AIITIIA/ FIIF /TI ~ 1[(1 2 e13 / 2 /2. 0 

3.8 Example. For each integer n ~ 0, there exists a vector space Vn 

over qF (3) and a solvable group Gn such (hat V~l ,is a faithful irreducible 

G II -111o(11l1e) dim(VII ) = 2· 4n) and IGIII = IVllia I)... 

Proof. If TV is a faithful irreducible H -module over a field F, we define 

1V* = 1VEBWEB1VEBW andH* = J]wrS4' Then TV* is a faithful irr.educible 

H* -module, dim.r(W*) = 4 . dim.r(W) and IH* I = 241HI4 ~ Observe that if 

IHI = 11Vla/A, then IH*I = 24· (11Vl aI A)4 = (24/A3;)IWI4a l).. = IW*la/)..., 
Of course, H* is solvable if alld only if His. 

Let Vo have dimension 2 over GF(3) and set Go = GL(V). Then IGol = 
48 = 9O' / A = IVo 1/ A. For n > 0, define iteratively Vn to be V

1
:- 1 and G n to 

be G~l~ l' TilC a.ssertion follows from the first pa.ragraph. 0 

Up to this point, the results of this section appeared in [Wo 4].' While 

this example shows that the results of 3.5 and 3.6 are in some sense best 

Clmp, I SO LVABLI~ LIN GAB. (.iltO u l'~j G5 

possibI~) Palfy [PI 1] has shown that the exp~nen't in Theorem 3.5 can be 

improved for characteristic' other than 3 and gives speciJfic exponents for 

specific characteristics. For maximal solvable subgroups of GL(n, q) which 

are not n~cessarily completely reducible, see A. Mann [Ma. 1]. 

Huppert [Hu 1 J was the first to give a logarithmic bound for dl( G) and 

Dixon "improved») it, i.e. Dixon gave a stronger bound, which has an error 

and is too strong for linear gr~ups) but is the correct. order of magnitude. 

Indeed it differs from below' by a constant. After the proof, we will give 

some examples and discuss the error in [Di 1]. 

3.9 Theorenl. Let G be solvable. 

(a) If G is a subgroup of tlle symmetric group Stl, tl1Cn 

dl(G) ~ ~ log3(n). 

(b) Let V =I=- 0 be a faithful and completely reducible F[G]-modulc over 

an arbitrary field F. Set n =dim.r(V). Then 

dl( G) ~,8 -I- ~ log3 (n/8). 

Proof. The proof is by induction on IGln, i.e. a.mong all counterexamples 

to the theorem choose one with IGln minimal. For x > 0, we let 

a(x)'= ~ log3(x) and f3(x) = 8 + ~ log3(x/8) = a(x) -1-:3 - ~ 10g3(8). 

Note that a(x) + a(y) = a(xy) and a(x) + f3(y) = f3(xy). 

First suppose that G is a subgroup of Sn and let n = {I, ... , n}. If n 
is the disjoint union of non-empty 'G-invariant subsets fl.1 ancl fl. 2 ) then let 

C j = {g E G I w 9 = w for all w E fl.d ~ Go' By the indudive hypo~hesis, 

dl(G/C j ) ~ a(lfl.il) for i = 1,2. Sin~e C1 n C2-= 1, it follows that 

dl(G) ~ max{a(Ifl.i/) Ii = 1,2} ~ a(n). 

Hence we ma.y assume that G acts transitively on n. 

If G acts imprimitively on n" we may then write n a.s a disjoint union 

n = n1 U ... u nm with 1 < m < n for subset's ni permuted by C. Let 
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N :;= {g E G I Dr = D j for ail i} ~ G. Then GIN transitively and faithfully 

.permutes the f2i 'and so the illducti~e hypothesis implies that cll( G / N) ::; 

a(m).· Now each fli is N-invariant and Inil = nlm for all i, because G 

transitively permutes the Dj . As in last paragraph, it follows that dl(N) ~ 

a( n / m) and altogether 

dl(G) ~ d) (GIN) + dl(N) ~ a(m) + a(n/m) = a(n). 

We can now assume that G acts primitively on n. 

. : Since G is a solvable primitive permutation group, G has a minimal nor­

mal subgroup lvI that is a faithful G/M-module and Inl = 1.1\11 = pi for a 

prime p and integer 1. The inductive hypothesis implies th~t dI( G / M) ~ (J(l) 

and thus 

dl( G) ~ 1 + (J( I) = 9 + 0'( 1) - 0'(8)= 0'(318
/

5 [/8). 

Since O'(x) is increasing, we have that dI(G) ~ O'(pt) = a(n) unless 318 / 5 [/8 

~ pi ~ 21. This can only happen for those values of pi in the next table. In 

each case, we may use Corollaries 2.13 and 2.15 or dl(GL(l,p» to give an 

upper bound for dl(G/.1\I) and dl(G) ~ 1 + dl(G/.1\1). We use [x] to clenote 

~reatest integer in x. 

pi rnax dl( G / M). max dl(G) [a(pl)] 
2 0 1 1 

3 or 5 1 2 2 or 3. 
22 2' 3 3 

32 4 5 5 

23 2 (Cor. 2: 13) 3 4 
24 4 (Cor. 2.15) 5 6 

25 2 (Cor. 2.13) 3 7 

Iil all cases, dl(G)::; a(pl) = a(n). The reslilt follows when G::; Sn. 
,..' 

We now assume that V is a faithful completely reducible F[GJ-module of 

dimension n. If IC is any extension field of F, then V 0;: K..: is a completely 
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reducible and faithful K[G]-module of dimension n. Hence it involves no 

loss of generality to assume that :F is algebraically closed. 

If V = VI ED V2 for G-modules Vj o~ dimension nj > 0, then each Vi is 

completely reducible and Ca(Vd n C a(V2 ) == 1. By induction, we conclude 

. dl(G) ~ max{dl(G/Ca(Vi»li = 1,2} ~ max{(3(nj)li = 1,2} ~ (3(n). 

We thus assume that V is an irreducible G-module . 

If V is not quasi-primitive, we choose C ~ G maximal such that Ve is not 

homogeneous and write Ve = VI ED ... EB Vt for homogeneous components 

Vi of Ve, t > 1. Now G/G transitively and faithfully pennutes the Vi. 

Thus dilll:F(Vi) = nit for each i, awl applying t,hc indudive hypoUw::iis 

to the adion of C on Vl ED ~ .. E9 Vt, we see as in the last paragraph that 

dI(C) ~ (3(n/t). We also apply inducti~n to the permutation action of G Ie 
on {VI, ... , Vd to conclude th~t dI( G / C) ~ O'(t). It follows altogether that 

dl(G) ~ clI(G/C) + dl(C) ~ a(t) + (3(n/t) = /3(n). 

Thus we assume that V is quasi-primitive. 

Since :F is algebraically closed and V is quasi-primitive, every normal 

abelian subgroup of G is cyclic and central in G. Let F = F( G) and T = 
Z(F) = Z(G). By C,orollary 1.10, dl(F) ~ 2 and F/T is a cornplet~ly 
reducible and faithful G / F-moclule.' If F = T, then' G = F is ,abelia:ri and 

dl(G) = 1 ~ /3(n). We may thus assume that e > 1, and write F/T = 

EdT x ... x Em/T for m 2:: 1 chief factors EdT of G, with each IEdTI = 

p;ki for primes Pi and integers k j .. Let Dj = Co(EdT) so that ni Dj = F 

and dl(G/F) = max{dl(G/D j ) I i = 1, ... ,rn}. Set e == TIiP7 i and observe 

that e I n, by Corollary 2.6. 

If p7 i = 2, then G / Di ~,33 and cll( G / D i ) ~ 2. ·If each p7 i is 2, then 
. k· . k 

dI(G) ~ 4,~ (3(2) ~ (J(e) ~ (J(n). Thus some]1/ is at least 3. If p/ = 3, 

then G / Di ~ SL(2,3) and dl( G / Dj) ~ 3, bcen.nse G acts symplectically on 
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EdT. Thus if each p7 i is at most 3, then dI( G) :::; 5 :::; 13(3) ,:::; !3(e) :::; !3( n). 
, k' ' 

Consequently, some p/ is at least 4. 

We claim that, for some j, pJi ~ 8 and k j ~ 2. Otherwise" for each 

z, k i = 1 or p7i = 22. Then Theorem 2.11 and Coroilarr 2.15 yield that 

dl(GIDj):::; 4,for all i. So dI(G):::; 6 ::;13(4),::; !3(e). The claim follows and 
. k' . 

e ~ p/ ~ 8. 

Each ki satisfies kj ::; Iog2( e) ::; e/2, because e ~ 8. Thus dim (EdT) = 
2ki :::; e::; n the inductive hypothesis yields that dI( G I Di) :::; !3(2ki ) for all 

1,. Set k = max{k i Ii = 1, ... , m}. Then 

dI( G) ::; dI( F) + dI( G I F) ::; 2 + !3(2k). 

Fo~ X~ ::; 2, dI(G) ::; 2 + [,B(4)] = 8 = ,B(8) :S ,B(e). So k~ 3and 

dl(G) :S 2 + ,B(2k) = 0:(3'1/5) + ,B(2k) = ,B(2. 34/5 . k). 

Since ,B is an increasing function of x and k ::; 10g2 ( e), we may assume that 

2 . 34
/

5 k > e and 2 . 34/ 5 Iog 2( e) > e. The latter inequality implies that 

e < 24 and the first rules out the case k = 3 and e == 16. Since k ~ 3, the 

only possibilities are e= p~1 = 23 or e = p~l = 24. In particular, FIT is . 

an irreducible G I F-~110dule ofordcr 26 or 28 (rcspedivdy). If c = 8, thcn 

Corolla.ry 2.15 implie8 that the derived length of G I F is at most 6, and 

therefore G lIas derived length at most 8 = ,B( e) ::; ,B( n). 

V./e now have that 16 = e ::; n and that FIT is a faithful irreducible 

GIF-module of order 28. If FIT is an imprimitive GIF-module, then GIF 

is isomorphic to a subgroup of S3 wr S4 or H wr Z2 for a solvable irreducible 

subgroup H of GL(4,2). In either case, dl(GIF)::; 5 byCor:ollary 2.15. By 

Proposition 0.20 and Corollary 2.5,'F(GIF) is abelian of odd order. If FIT 

is primitive, then GIF;S f(2 8
) by Corollary 2.3. In all cases,dl(GIF)::; 5: 

Hence dI(G) :S 7 < f3(c) :S ,B(n). 0, 

Suppose, that G is a primitive linear group of degree nand IF( G) 

Z(C)I = n
2

: It. is incorrectly argued in [Di 1] (when n = 3and more critically 
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when n = 8, see p. 156) that C IIf( G) must have trivial center, whence the 

G IF( G)-module F( G)I Z cannot be irreducible and primitive. Indeed, the 

hound given in'[Di 1] fora linea~ group of degree 8 is 7 ~ [% log3(8) + 5/2]' 

not 8 as above. However, Glasby and Howlett [GH] have constructed a solv­

able irreducible G::; GL(8,3) with dl(G) = 8 (even more G::; Sp(8, 3)). In 

this group, F(G) is extra-special of order 27 and F2(G)/F(G) = F(GIF(G)) 

is extra-special of order 33. Also G IF 2 ( G) ~ G L(2, 3) acts faitl~fully and 

irreducibly OIl F 2(G)/L, where L/F(G) = Z(F2/F(G)) 1. Z(GIF(G)). 

3.10 Proposition. Let 5 be a solvable permutation group on n .(not nec­

essarily transitive ). Assume one of the follovfing 

(i) S is a primitive perniutation group; 

(ii) dI( S) :S 2; 

(iii) dieS) = 1 and S(1-1) has odd order. 

If H i~ solvable, thel?' cll(HwrS) = dI(II) + dieS) .. 

Proof. Say S :::; 5 n and let G = HwrS. Then G has a n~rmal subgroup 

I{ = H x ... x H, a direct product of n copies of II that are permutf?d by 

5. Also G = I( 5 and 1 = Ie n's. Clearly, dl( G).:::; dl( In + dl( G I I() = 

dl(H) + <U(5). If I = clI(S), it suffices to. show clI(G,(l)j ~ clI(H). We may 

assume that l =/ 0, i.e. S f. 1. 

Let kI = S(I-1) so that kI f. '1 is an abelian normal subgroup of S. 

- Let 1 f..0' E Jv! and assume w.l.o.g. that 0'(1) = 2. Let x = (h, 1, ... ) E 

IC Then [0'):1:] = 0'-l x - 1 0'x ~ (h,h- I ,I, .... ,I) and [O',X]E [1(,1\1] ~ 
[I{, G(l~l)] .~. C(l-l) n IC If we let IT l : I( ',-+ Hbe the projection inap 

from I( to H rela.tive to the first component~ then rr~ ([1(,111]) = H. Hence 

dl(G')'~ dl([j(,1I1]) ~dI(H). Thus we may assume5is non-abelian. Since 

. lvI acts non-trivially on the S-orbit {I S} and since M:S 5', indeed 11 sl ~ 3. 

vVe thus can assume IS = {I, 2, ... , m} for an integer m, 3 ::; Tn ::; n. 

First suppose 7 E 111 and 7(2) = 3. If to = [0', xl = (h, h- I
, 1, .... ,'1), then 

. tv E G(l-I) nI( (as in. the last paragraph). Siilce 7 E G(l-I), [7, to] E G( l)nIC 



DuL IT,W] = (*,*,h,.:.). Hence I1 3 (G(l) nIn = 11 and d1(O(l») 2 dl(1!) , 

as desired. Thus 7(2) E {I,2} for all 7. In particular, {1,2} is an M-orbit 

in {I, 2, ... ,m}. Since (J E ,111 - {l} was chosen arbitrarily and since A1' 

cannot have fixed points in the S-orbit {I, ... ,Tn}, we have that the lvI­

orbits of 1 S a.re {I, 2}, {3, 4}, ... , {JI1 - I, rn}, after a possible relabelling. 

Thus lvI/CM(1 S) is a non-trivial elemeiltaryabelian 2-group. 

If S is a primitive permutation group.on il, then M would be the unique 

minimal normal subgroup of S and act transitively on n (see discussion fol­

lowing Theorem 2.1). Since Tn ~ 3, S is not primitive by the last paragraph. 

To complete the proof, we may assume that dl( S) = 2. Choose 0' E S wi th 

0'(1) = 3. Thenl:\',x] = (h,l,h- 1 ,l, ... ) and [a, [0', x]] = (h,h- l ,*, ... ) .. 
Since [a, [a, x]] E G"nI( iffollows that dI(G"nI() ~ dI(H) and dl(G) = 

2 + dl(H). 0 

3.11 Exanlples. Let H be the semi-direct product of an elementary abelian 

group E of order 9 and Aut(E) ~ GL(2, 3). Then H is a permutation group 

of degree 9 and derived length 5. 

(n) Let Ii1 = Hand iteratively define H j = J!j-l wrli. Then Hj is a 

transitive permutation group of degree gj. By Proposition 3.10, dI(fIj ) = 
5j = ~ log3(gi). Hence the bound in Theorem 3.9 (a) is best, possible for 

illfilli tcly many n. 

(b) Let Vo be a faithful irreducible Go-module with Go 'solvable of derived 

:.' length d. Let m = dime Vo) ~ Iteratively define \'i and G i by letting Vi be 

the dii'ed sum of 9 copies of Vi-l and letting G i ,= Gi-lwrH. Then Vi is 

a faithful irreducible Gj-module with dim(Vi ) = gim and dl( G i ) = d + 5i. 

Thus dI( G i) = ~ log3 ( dime \'i)) + d - ~ 10g3 (m). This shows that the bound 

% log3 (n) + 8 - % 10ga(8) is a best bound or nearly so in each characteristic, 

. i.e. in a given characteristic, it may be possible to lower the additive constant 

. , (8 - ~ 10ga(8) e:: 3.268), but the coefficient of log(n) cannot be reduced a.nd 

the additive constant stin must be flOn-negative. Also, to see the bound 

is obtained for infinitely many i ill some char~deristic, it suffices to find a 

: .... '.!, J { ~ -... ..... : l) .\ I. 

linear group of degree 8 and derived length 8. We refer the reader :to the, 

discussion preceding Proposition 3.10. 

The following is a little weaker than Theorem 3.9, but sometimes rllore 

convenient. 

3.12 Corollary. Let G be solvable. 

(a) If G ::; Sn, then (ll(G) ::; 210g2(n). 

(b) If V i=- 0 is a faithful and completely reducible G-module over an 

arbitrary field F, tilen dl(G)::; 2log2(2n). 

Proof. Since ~ 10g3( x) ::; 210g2( x) for all x ~. 1, part (a) is immediat.e. 

Observe that 8 +%log3(x/8)::; 2log2(2x) for all. x ;:: 8. For 2::; n::; 7, the 

greatest integer in 8 + ~ log3(n/8) is the same as that in 210g2(2n); So it 

remains to verify (b) when n ,= 1 and this is trivial. o 

3.13 Rell1ark. We have given polynomial bounds for the order of a Sy- , 

low p-subgroup of GL(n; q) for p =I=- q (Theorem 3.3) and also for solvable 

completely reducible subgroups of GL(n, q) (in Theoren~ 3.5). Since the 

order of a Sylow q-subgroup Q of GL(n, q) is qH(n-l)/2, ,its order is not a 

polynomial function of qll. Of course, Q does not act cOlllpletely reducibly. 

These bounds also show Q cannot be a subgroup of a completely reducible 

solvable subgroup of GL(n, q). That can also be deduced from Theorenl 3.9. 

Actually, if qm is the order of a Sylow q-subgroup of a completely reducible 

q-solvable subgroup of GL(n,q), ther), m < n. In [Wo'5J, it is shown that 

and 
n-1 

<-­
- p-1 

if p is not a Fermat prime. 

(H~re [ ] denotes the greatest integer function). These bounds are in some 

sense best possible. 
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There a.re some interesting consequences of the bounds just mentioned. 

Suppose that G is p-solvable with p-le~gth I and p-rank r.' (The p-rank' of 

G is the largest integer r such that pr is the order of a chief factor of G.) 
Also, I~t pb be the order of a Sylow p-subgroup. Then 

i) i is bounded above by a logarithmic function of b. 

ii) I is bounded above by a logarithmic function of r. 

Proofs are given in Theorems 2.2 and 2.3 of [Wo 5J .. The bounds, which 

, are in some sense best possible, are slightly weaker for Fermat primes. The 

bouflds for I in terms of 7' arestated below in Remark 14.12 (a). 

§4 

Chapter II 

SOLVABLE PERMUTATION GROUPS 

Orbit Sizes of p-Groups and the Existence of 

Regular Orbits 

Let G be a permutation group ona finite set n. The orbit {w g I 9 E G} 

is called regular, if Gc(w) = 1 holds. 

In this section we consider a finite p-group P which acts faithfully and 

irreducibly on a finite vector space V of characteristic q =f=. p. For several 

questions in representation theory, it turns out to 'be helpful if one knows 

that P has along orbit (preferably a regular orbit) in its permutation action. 

on V. For.applications, see §14. 

We start wi th an easy, but tiseful, lemma. 

4.1 Lemlna. Let G act on a vector space V over GF(q), and let 6. =f=. Obe 

an orbit of G on V. If A E GF(q)#, then A6.=I=-6. or o(A) I exp(G). 

Proof. Let A6. = 6.. Then, for v E 6., there exists 9 E G such that 

AV = vg. If n = o(g), then ~ = vg H = 'vA n and o(A) In. 0 

We recall that ~. and 9J1 denote the set of Fermat and Mersenne primes, 

respecti vely. 

4.2 Lemma. Let P be a non-trivial p-group and V' a faithful, irreducible· 

andprimitive P-module over GF(q) for a prime q =1= p . . Set IP/ = pn and 

IVI =qm. 

(a) Therea,lwClYs is a regular orbit of P on V, except t11e case w1]ere 



(p, q) E (2, DJn and P is dilledral or semi-dihedral. In this exceptional 

case, cle~rly P llas D~ ~. Z2wr Z2 as a subgroup.' 

(b) If(p, q) ~ (2, fm) U (2,~) U (fm, 2), tl1ere even exist two I~egular orbits. 

(c), In any case there are vl, V2 E V such that C p(vt)' n C p( V2) = 1. ' 

. . ' . 

Proof. Since P acts primitively on V, every normal abelian subgroup of P 

is cyclic. Hence Corollary 1.3 implies th~t P is cyclic, quaternion, dihedral 

or semi-dihednil. In particular, P has' a cyclic normal subgroup Z of ind~x 

1 or 2. Every subgroup of Z is normal in P and so C z( v) = 1 for all 

, 0 i= v E V, i.e. every i-orbiton V - {O} is'regular. Also ICp(v)1 .s 2 for all 

v E V - {O} and part (c) easily follows. 

To show that (a) implies (b), we may assume that P has exactly one 

regular orbi t .6. in V. If). is a generator for G F( q) #, then ),.6. is also a 

, regular orbi t and so ),.6. = '.6.. By Lemma 4.1, q'~ 1 = o().) = pj for some 

, j. By Proposition 3.1 and our assumption on (p, q), the only possibility is 

q = 2, p odd. But then P = Z has only o~e orbit on V# and qIH -1 ='IPI, 
'.contradicting Proposition 3.1. Hence (a) i~nplies (b). 

It remains' to prove (a). We thus assUll~e that P has no regular orbits, 

:p > Z, and p =2 = ICp(v)1 for all v E V#. Thus P = ZCp(v) for, 

,all v E V and each Z-invariant subspace of V ~s indeed P-invariant, i.e. 

'V z is irreducible. Also, P cannot have a' unique involution, whence P is 
dihedral or semi-dihedral. An easy counting argument shows P has 2n "':': 1 

or 2n
-

2 involutions outside Z (respectively). (Definitions of dihedral and' 

semi-dihedral appear in the proof of Proposition 1.1). We need to show 
q E 9)1. 

Since now Vz is irreducible, P acts semi-linearly on V = GF( q2rn'), 

"where rn = 21'1'1,' by Theorem 2.1. More precisely, we have with Z = (z) and 

,;,,~ E P \ Z that 

J 

vz = av and vg = bv qm 
(a, b E GF( q2m' )#). 

In particular, g2 = 1 if and only if bb
qml = 1. This enables us to count 

the number of fixed-points of 9 on V# (and hence of all involutions outside 

Z). Namely Va i= 0 is a fixed-point of 9 if and only if Vo = bvg
m/

, i.e. 
I I ' I 

vg m 
~) = b-1 . Since b1+qm = 1, this equation has q1H - 1 solutions Vo in-

GF(q211l/)#. 

Sllice ICp(v)1 = 2 holds for all 0 i= v E, V, and since Zacts fixed-point:.. 

freely on V, counting of the set 

{(v,i) I V E V#, i involution in P \ Z, i E Cp(v)} 

yields s . (qml - 1) = q2m/_ 1, i.e. qml + 1 = s is a power of 2. Thus q E 911 

(Proposition 3.1). D 

In view of §7, the following lemma is stated in a lllOre gcneral vcrs ion 

than needed in this section. 

4.3 Lenlma. Let P be a p-;grollp and V a faithful P-module over GF( q) 

for a prime q (possibly q = p). Suppose tllat V = VI EB· .. EB ~n for subspaces 

Vi i= 0 of 11 th~t are permuted by P (not necessarily transitively). Assume 

that Np(Vi)jCp(Vi) has at least k regular orbits for an integer kEN 

(i = 1, ... , 1n). Tllen P llas at least k regular orbi ts on V, unless 

(i) k = 1, and q = 2 or (p, q) E (2, J); or 

(ii) k = 2, and (p, q) E (2, J U {2}). 

Proof. We proceed by induction on dimGF(q)(V) and assllme without loss 

of generality that m> 1. If P has more than one orbit on {VI, ... , ~n}, 

we may, write V = VI EB U2 for P-invariant subspace~, Ui, each of which is 

a sum of some VI's. ,We apply the inductive hypothesis to the action of 

PjCp(Ui) on Uj (i = 1,2). If the exceptional case occurs for at least one 

i E {I, 2}, ~e are clearly done. Hence there exist Xl, • .• ,Xk E U1 belonging 

to k distinct regular orbits of P/Cp(UJ) and Yl, ... , Yk E U2 be~onging to k 

distinct regular orbits of PjC p(U2 ). Now 

l 
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and (Xj, Yj) E V generates a regular -P-orbit for all i, j. Note that (Xi', Yj) 

is conjugate to (x k d/t) if and onl):" if i = k and j = I. Thus P has at least 

k2 2 k distinct regular orbits on·V. 

We thus assume that P transitively permutes the Vi. Let N -:::] P such 

that N 2 Np(V1 ) and IPINI = p. Then VN = WI EB '" EB Wp for N­

invariant subspaces ,Wi .th~t are transitiv~ly permuted by PIN. Observe 
I, 

that N p(Vi) ::; N and N p(Vi ) = N N(Vi) for all i. As in the intransitive 

case we may assume by induction that NICN(Wi) has at' least k regular 

orbits on H'j (i = 1, .. . ,p). Let ~i contain one element of Wi from each 

regular orbit. Then 1 := 16il ~ k and 6 := 6 1 x ... X 6 p cont~ins [p 2 k P 

elements. Pick y E 6, say y = (W1,' .. ; wp). Assume that I 2 2 and choose 

y -=f. z E 6 with z = (UI,W2,,,.,Wp ). We claim that Y or'z is in'a regular 

P-orbit. Sil~ce both Y and z belong to regular N-orbits, we can assume that 

Cp(y) and Cp(z) have order p and complement N. Choose a E Cp(y) ,and 

b E Cp(z) with o(a) = o(b) = p and Na = Nb. Then a and b induce the 

same non-trivial permutation on {Wl, ... , lVp} and;hence there exists j > 1 

.such that wr == Wj and u~ = Wj' Then w1b-
1 

= UI. Since ab- I E N, WI ' 

and U 1 are N ~conjugate, contradicting our choice of y, z E 6. Thus y or z 

generates a regular P-orbit. Consequently, at most one element of the form 

(V,~U2"'" lOp), V E 6 1, is not in a regularP-conjugacy class. Hence at least 

lJ! - [lJ-l = (l_l)[1J-I elements 'of 6 lie in regular P-orbits. No two elements 

of 6 are N-conjugate, but they may be P-conjugate. Hence there exist at 

least (1-1)[P- 1 /pdistinct regular P-orbits in V. Should (k-l)kP-1/p 2 k; 

the conclusion follows, because ~ 2 k. We thus assume that (k -1 )kP- 2 < p, 

i.e. either k = I, or k = 2 andp:::; 3. 

Assume that k = 2 and p = 3 and let {Ui' wd ~ 6 i (i = 1,2,3). We can 

find an element (1Ol,W2,103) E 6 which is 'not in a regul~r P-orbit, since 

otherwise P has at least 23 /3 2 2 regular orbits. The argument in the last 

paragraph now shows that (HI, 102) 'W3), (WI, U2, 'W3) and ('W 1, 'W2, U3) all lie 

in regular P-orbits. If there are four elements of 6 in regular P-orbits, then 

there are at least 4/3 and in fact two regular orbits. Hence (Ul,U2,U3) and 
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(Ul' U2, W3) are both not in regular P-orbits, contradicting the argument of 

the last paragraph. Therefore k = I, or k = p = 2. 

Let .\ generate the multiplicative group G F( q)#. If k = p = 2, the 

argument in the next to last paragraph shows that (UI, U2) or (WI) U2) lies in 

a r~gular P-orbit. Say (u}, U2) is in a regular P-orbit. Then so is ('\Ul, .\U2) 

and hence we may assume that (.\u], .\U2) is P-conjugate to (UI) U2). By 

L~mma 4.1, q - 1 = 0(.\) = pj = 2j for some J. Hence q E F i.J {2}. We 

~ay now assume that k = 1 and N / C N (VVI ) has exactly one regular orbi t 

on W. If WI E 6 1, the~ .\lDl is lY-co!1jugate to WI and so' q -1 = 0(.\) = pi 

for some j. Thus q = 2 or (p;q) E (2,F).... 0 

4.4 Theorem. Suppose that the p-group P acts irreducibly and faithful1~ 

ontheGF(q)-vectorspaceVofcoprimedlaracteristicq. H(p,q) rf. (2,9J1)U 

(2,J) U (9J1,2), then P induces atleast two regular orbits on V. 

Proof. If P acts primitively on V~ apply Lemma 4.2 (b). If not, we may 

choose N :Sl P of index p such that VN = VI EB ~ .. EB Vp for irreducible 

N-modules Vi which are transitively permuted by P (see Corollary 0.3). 

By induction, N P(Vi)/C p(Vi ) = N /e N(Vi ) has at least two regular orbits. 

on Vi (i = 1, ... ,p). Thus the result follows by induction from Lemma 

4.3. o 

The following examples show that in. the exceptional cases of Theorem 

4.4 regular orbits need not exist. 

4.5 E~amples. (a) Let (p, q) E (9J1,2) and set p = 2/ - 1 ~ 3. We consider 

P = Zpwr Zp and denote by U ~ GF(2/) the f-dimensional ,module over 

GF(2) on which Zp ~ GF(2f.)# acts fixed-point-freely. We view U as a 

module for the base-group 'Zp x ... X Zp ~ P 1 where the first component 

acts as above and where the others centralize U. Then V := uP is a faithful 
. irreducible P-module. But since 

IPI = p7,+1 > (p + l)P ~ 1 = 2/p 
- 1 = IVI- I, 



P has no regular orbi t on V. 

(b) We now consider (p, q) E (2, J) ~here q =: 21 + 1 ~- 3. _ Let P 

Z2J wr Z2 and denote by U = GF(q) the I-diniensional module over GF(q) 

on which Z2J ~ GF(q)# acts fixed-point-freely. As above we view U as a 

module for Z2J x Z2J ~ P. Then V := uP is a faithful and irreducible 

P-module. If q > 3, the~l P has no regular orbit, because 

IPI = 22/+1 = 2(q - 1)2 > q2 - 1= IVI- 1. 

If q = 3, then IVI = 9 and IPI = 8. In this case, a regular orbit must be the 

'only non-trivial orbit. But (x,O) is not in a regular orbit (x i=- 0), and so P 
~as no regular orbit. 

(c) Let finally (p,q) E (2,9)1), q = 21 -1 ~ 3. Set V = GF(q2), take 

aE Vo~order o(a) =q+ 1= 21 and consider P= (a,b) S; r(q2) such that 

P acts on V via a: v I--t-av, b: v I--t v q• But now for each Vo E V#, there is 

, some j such that v6-1 = a-j . This however means that voba'i = ajvg = Vo, -

and P has no regular orbit on V. 

In the exceptional cases of Theorem 4.4 we show that there at least exists 

an orbit of size greater or equal to <Vlpl. 

,4.6 Lelnnla. Let P b~ a p-group w}licll acts faitllfully on a vector space V 

over G F( q) fora prime q (not necessarily different from p). Suppose that 

V = V1Ef) ',' . Ef) Vm for subspaces Vi i=- 0 that are permuted by P (possibly 

intransitively). Assume tllat for eadl i, there exist Uj, Vi E Vi such that 

CN(Vi)(ut) n CN(Vi)(Vi) = CN(Vi)(Vi). If p > 2 assume in addition tilat Uj 

a,nd Vi are not, conjugate in N P(Vi). Tilen there' exist u, v E V such that 

_ Cp(u) n Cp(v) = 1. Ifp> 2" then u and v may be chosen so as not to be 

P-conjugate. 

Proof. vVe proceed by induction on dimcF(q)(V) and assume rn, >' 1. If P 

- has more than one orbi t on {Vi, ... ; Vrn}, the argument is similar to the one 

in the proof:of Lemma 4.3 and we omit details. 

Thus there exists Np(Vd S; N S1 P with IP/NI = p such tha~ V = 

VV1 EB . ~ . EB Wp for N .,invariant subspaces Wi that are transitively permuted 

byP/N. Also there exist Xi, Yi E Wj (i =1, ... ,p) such that CN(Xi) n 
CN(Vi) = CN(Wi). For p > 2, we may assume that Xi -and Vi are not 

conjugate in N. For 9 E p) we have that xf, yf E W! and hence that 

C N( xD n C N(yf) = CN(W!). Since P transitively permutes, the Wi, we 

may assume that Xl,X2,""Xp are all P-conjugate and YJ,Y2, ... ,YP are all 

P -conjugate. 

Consider firsf the -case p > 2. If Xi is P-conjugate to some Yj, then 

also xI' = Yi for some 9 E P. This however implies 9 E Np(Wi ) = N, a 

contradiction to the choice of Xi and Yi. Hence Xi is never P-conjugate to 

any Yj. Let x = (Xl,Y2, ... ,Yp), Y = (Yl,X2,.",X p ) E V. Then Cp(x) ~ N 

and Cp(y)S;N. Hence 

p p 

= n(CN(Xi} n CN(Yi)) = n CN(Wi ) = 1. 
i=l i=l 

Ifxand yare P-conjugate, say xh = Y, then y~l, yf E {Yl,X2, ... ,Xp} and 

y~l = YI = y~l, a contradiction. We are done if p > 2. 

Let p = 2. Now' 

We"may thus assume that 

for involutions a, b E P\N. Now Xl = X2, Yi = Y2, x~ = Y2 and yf = X2. Set 

8 = ab EN., Then 8
2 fixes all Xi and Yj and s2 = 1. Si:p.ce xf = Yl, Xl and YI 

are conjugate by an involution 8 E N. If Xl and YI are linearly dependent, 

say Yl E (Xl)' then also Y2E (X2) by conj~gation. In this case, Xi is in a 

regular orbit of N/CN(Wi), i = 1,2. Thus CN((Xl, X2)) == 1, and without 

loss of generality C p((Xl,X2)) =:= (c) for an involution c E P. Choose vE V 
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not centralized by c and note that C p(v)nC p((Xl,X2)) = 1. Thus the 

assertion holds and we may assume that x I and YI are linearly independent. 

Now {xl,yd and {Xl - 'YI,Vd generate the same 2-dimensional subspace 

of. VVI . Hence 

Replacing X I by Xl - YI in the above argument, there exists an involution 

tEN conjugating Xl - VI and YI' Now x~t = y~ = Xl - YI and yr ~ xf = 
((Xl - YI) +yI)t = YI + (Xl - YI) = Xl. A matrix for sttestricted to the 

subspa.ce generated by {Xl, Yl} thus is (! 1 ~), which has order 6. This 

is a contradiction, because P is a 2-group. 0 

4.7 TheorelTI. Suppose tlwt tiJe p-group P acts irreducibly and faithfully 

ontheGF(q)-vector space 11 of coprime elJaracteristic q. Then there always 

are two vectors VI, V2 E V suel] that C p( VI) n C p( V2) = l. In particular, 

IP: Cp(vi)1 ~ VTPi for i = lor 2. 

Proof. Assume at first that p > 2. We' show that we can even find such, 

vc(~tors 11 I, 112 in different 'orbi ts. If P is primi tivc, thcri Pis cyclic and thus 

has a regular orbit {vf "g E P}. Take VI and V2 = O. If P is imprimitive, 

apply induction and Lemma 4.6. 

When p = 2, the primitive case follows from Lemma 4.2( c) and the 

imprimitive case follows via induction and Lemma 4.6. o 

. We give another criterion for the existence of regular ,orbits. It should 

be clear that the hypothesis of the following theorem is rather difficult to 

chec,k explicitly. But since Zp wr Zp has class p, it is certainly satisfied if P 
has class less than p. 

4.8 TheqrelTI. Suppose that the p-group P acts irreducibly and faithfl:illy 

on a G F( q)-vector space V of coprime characteristic q. If P does not'involve 

~i 
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,~ , 

a section isomorphic to Zpwr Zp, tIlen P lJas a regul~r orbit in its action on 

V. 

Proof. By Lemma 4.2 (a), we m'ay assume that P is imprimitive. By 

Corollary 0.3, there exists N :s! P with IP: NI = p such that 1/N = VI EB 

... EB Vp for irreducible N ~modules Vi which are transitively permuted by P. 

Since N IC N(VI ) involves no section isomorphic to Zp wr Zp, the inductive 

hypothesis yields the existence of a vector u E VI# such that CN( u) = 

C N(Vd. Let 9 E P \ N, hence gP EN. vVith01it loss of generality, we may 

assume that 9 cyclically'permutes the ~paces VI,'" ,Vn . We now consider 

the vector V = (u) uf!) ... , u
gP -

t
) E V. Since 

p-I p-I 

Civ(v) = n CN(uyi = n CN(Vj) = CN(V)= I, 
j=O j=O 

it remains to assume that IC p( v)1 = p. Replacing 9 by a generator of C p( v), 
we may also assume that gP = l. Suppose now that evennj~: C N(Vj) = 1 

and let w = (O,ug, .. :,ugP -
l

) E V. Then 

p-I p-I 

Cp(w) ~ CN(w) =: n CN(U)gj = n CN(Vj) = 1. 
j=I j=l 

Thus w generates a regular P-orbit and we may take 1 =f Y E nj:~ CN(Vj ) 

, with yP = l. Let A be a matrix representation of the action of y on VI, and 

let E denote the identity matrix of ra,nk dim (VI)' Then y induces the map 

i. (A, E, ... , E) on VN == VI EB .. , E9 Vp. Consequently, Zpwr Zp ~ (y, g) ~ P ;; / 
and the proof is complete. o 

It is not hard to extend Theorems 4.4 and 4.8 to nilpotent operator 

groups. Fo~ this and also other r~lated results we refer the reader to T . 

Berger [Be 1], P. Fleischmann [FI 1], R. Gow [Go 1], D. Passman (Pa 1], 
and B. Huppert & b.Manz[HM 2]. The step toward~ supersolvable groups 

however is much more delicate. 

4.9 R.e)TIark~ Let r(p1ll) be a semi-linear group as defined in §2. For 

q I'm, let S be the unique subgroup of Gal (G J(pm)) of order q. In the 

,\' 



grollp ro(plt!) of multiplicatiolls, we define the q-norm-l S'UbgToUp N(p1H, q) 

by 

, N(p7n, q) = {x E ro(p1H)/ II XU = I}., 
uES 

Set G(pm, q) = N(pm, q) . S. Then the following ~heorem holds (A. Turull 

[Tu 1]). Let G be a supersolvable group which acts faithfully and completely 

redupibly on a GF(p)-ve'ctor space lV. Suppose that G involves no section 

isomorphic to 

(1) Zrwr Zs for primes I, S, or 

(2) N'(pqe 1 q) for a positive integer e and a prime q. 

Then G has a regular orbit on ltV. 

The nlain difficulties in proving regular orbit theorems arise when the 

action is imprimit'ive. Quasi-primitive solvable groups however are easier to 

handle, as we shall see now. 

4.10 Propo,sition. Suppose that the solvable group G acts faithfully and 

quasi-primitively on a finite vector space V. Tllerefore, every normal abelian 

subgroup of G is cyclic and we adopt tile notations of Corollary 1.10. If 

e > 118, then G has at least two regular orbits on V. 

Proof. (a) We first show that ICv(g)1 ~ IV13/4 for 'allg ~ G#, an~ freely 

use the assertions of Corollary 1.10. 

(1) If 9 E U#, then Cv(g') 
point-freely'on V. 

1, since the cyclic group, U acts fixed-

'(2) If gET \ U, then [g, uJ' E U# for some .UE U. Observe that 

ICv(g)1 = ICV(g-I)1 = ICv(gU)1 and CV(g-I) n Cv(gU)::; . 

Cv([g,u]). Now Cv([g,u]) = 1 (by (1)) and theref~re 

IVI2: ICV(g-I). Cv(gU)1 = IC v (g)1 2, which yields the claim. 

(3) If 9 E F\ T, then there exists ,,X E E such that [g,~] E Z#. By (1), 

Cv([g,x)) = 1 and the same argument ~s in (2) yields ICv(g)l::; 
IVI 1 / 2 • " 

(4) Let 9 E A \ F. Then there exists x E E such that [g,:t} E E \ z. By 

, (3) we know that ICv([g,x])i ~ IVI1!2. Cons~quently 

IQv(g)1 2 = ICV(g-l)I'ICv(gX)1 

~ICV(g-l) . Cv(gX)I·ICv([g, x])1 ~ IVI· IVI I/ 2 = IVI 3/ 2. 

(5) Finally if 9 E G \ A, there exists zE Z suchthat [g,z] E Z#. By 

(I), Cv([g,z]) = 1 and ICv(g)1 ~ IVI I / 2. 

(b) Any v E V not contained in UgEo# Cv(g) must necessarily lie in a 

regular G-orbit. If G does not have two regular orbits, then (a) implies 

(IGI- 1) ·IVI
3
/

4 ~ I:: ICv(g)1 ~ IVI-IGI· 
gEO# 

Let W be an irreducible submodule of Vu. By Corollary 2.6, IVI > IltVle 

where e is as in Corollary 1.10. We thus obtain 

IGI ~ (IVI + IVI3~4)/(IVI3/4 + 1) ~ IV1 1
/

4 ~ IWle/4. 

But" by Corollary 3.7, IGI ~ e I3 /2IUI 2/2 < e13 /2IltVI 2 /2. It follows that 

eI3 /2 > 2·lltVle/4/IWI 2 = 2·IWle/4-2, and then e26 > 24:llVl e- 8 ~ 24 ·3c- 8 • 

Therefore, e ~ 118. 0 

With some more care, the exis.tence_ of regular orbits can certainly be 

established also for smaller values of e. A. -Espuelas [Es 3] has shown that 

whenever IGI is odd and e > 1, then there exist two regular orbitf) on the 

quasi-primitive module V of odd characteristic. 

4.11 Remark. Suppose that G acts faithfully and coprimely on a solv­

able group H. Sinc~ F(HG) = F(H), G also acts faithfully on F(H) and 

.' then even on F(H)/~(F(H)) =: V. We decompose V = VI ED ... ED Vn 

into irreducible G-modules (possibly of different characteristic). Suppose 

G /CO(Vi) all have regular orbits on Vi" say generated by Vi E Vi. Then 

v =VI + " . + Vn generates a regular orbit of G on V. Thus there is h E H 

suchthatCo(h) = 1, i.e. h generates a regular G-orbit on'1-I. 
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§5 Solvable Permutation Groups and the Existence of 
( 

Regular Orbits on the Power Set 

Sec. 5 

When investigating a permutation group G on a finite set n, one can as' 

well consider the induced action of G 'on the power set ~(n) of n. The 

question we are concerned with iIi this sedion is whether G has a reguiar 

orbit on ~(h), i.e. whether there exi~ts a subset f1 ~ n such that the setwise 

stabilizer stabG( 6.) of 6. is trivial. As the examples of the symmetric and 

alternating groups show, one cannot expect this to be true in general. For 

primitive solvable permutation groups, however D. Gluck [GIl) has given a 

complete answer. 

In the following we use the structure of primitive solvable permutation 

groups stated in comments'following Theorem 2.1. Let S denote a point. 

stabilizer and V the unique minimal normal subgroup of G. Thus Inl '= ' 

IVI = pm for a prime p and mEN. To obtain, certain consequences, in 

fact a slightly stronger que!Jtion will be considered, namely whether there 

is 6. ~ n, 16.1 f= Inl/2, such that stabG(6.) = 1. We call such an orbit 

a strongly reg1dar orbit. Clearly for p > 2, each regular orbit is strongly 

r~gular. We denote by n(g) the number of cycles of gE G on n, and by 

.9(g) the Humber of fixed points. 

For 5.1 to 5.5, we assume that G is a solvable primitive 'permutation 

group on n. 

5.1 Lenlma. If 9 E ,G#, then neg) S; (Inl + 8(g»/2 S; (p + 1)lnl/(2p) S; 

3Inl/4 . 

Proof. If 8(g) = 0, we c'learly have neg) S; In1/2. We'thus may assume that 

9 has fixed points, and without loss of generality 9 E S. Since the actions of 

S on V and n are permutation isomorphic, it follows th!lt s(g) = lev(g)l, 
and since S acts faithfully on V, 8(g) IIVllp = Inllp. Therefore 

n(g) S; 5(g )+(Inl-s(g »/2 = (Inl +,5(g »/2 S; (p+ 1)lnl/(2p) S; 3Inl/4. 0 
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For a subset X ~ G, it is worthwhile to consider in the following the set 

'reX) = ((g,'f1) I 9 EX, f1 ~ il, 9 E stab G(6.)}. 

By an easy counting argument, which in turn relies on bounds for the order 

of linear solvable groups, we are left with only finitely many cases. 

5.2 Proposition. If Inl 2 81, tllen G lIas a strongly regular orbit on the 

power set ~(n}. 

Proof. Note that 9 E G stabilizes exactly 2n(g) subsets of n.' Consequently, 

Corollary 3.6 and Lemma 5.1 imply 

Since 1~(n}1 ~ 2/ 11
/, we certainly find a regular orbit of G on ~(n), provided 

that 

or equivalently 

One easily checks that this holds for Inl 2 81. 

In order to prove the existence of a strongly regular orbit, we may there­

fore assume that Inl is a 2-power greater than or equal to 128 = 27. First 

observe that (m/2) S; (m/'; + 1) + (m/'; -1) for an even number 

mEN. Thus the number of subsets of n of cardinality different from Inl/2, 

which equals 21"1 - (IA~)2), is greater than or equal to 21"1-'. Hence we 

get as oUT condition for the existence of a strongly regular orbit 

(1/2) . In1 13 / 4 .23 /11 //4 < 2/ 11 /- 1 , 

or equivalently 13 .log2(lnl) < In/. This holds for Inl ~ 128. o 

Rather easy to handle is also the case where Inl = p is a prime. 
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5.3 Lemlna. Suppose that Inl = p is a prime number. Then G has no 

~egular oI'bit on Sfl01) if an'd only if p =;= 3, 5, 5 or 7 and G ~s isomorpllic to 

the Frobenius group F(j, F~o', F20 or F42 (respectively). 

Proof. If G = V is cyclic of order p, then anyone-point subset of n gen­

erates a regular orbit of G on l.lJ(n). Therefore we may assume that G 

is a Frobenius group with kernel V and complement 5 i- 1; in: ,particular 

151 I p - 1 and p :::: 3. Recall the p~rmutation isomorphism between nand 

V (where 5 acts on V by conjugation). 

Let T be a subgroup of G of prime order q which has a fixed point on 

l.lJ(n). Then T is contained in some conjugate of 5, and T fixes exactly 

21+(p-l)/q subsets 6. ~ n. Since for a fixed prime q, G contains exactly p 

such subgroups T, we obtain 

1{6. ~ nl stabo (6.} i- 1}1 :s; I{(T, 6.)16. ~ n, ITI a prime, T:S; stabo (6.)}1 

:s; p L 21+(p-l)/q =:f(p), 
q 

where q runs through all prime divisors of p - 1. , Now observe that the 

number of prilne divisors of p - 1 is boundedby 10g2 p. We thus obtain that 

f(p) ~'p . log2 P . 2(p+l)/2 < 2P, 

provided that p ~ 13. Also f(11) = 11(64 + 8) < 211. This counting 

argument tells us that regular orbits on l.lJ(n) can only fail to exist in the 

case p :s; 7. 

We start by considering the case p = 7. If IGI = 42, then G cannot have a ' 

regular orbit on \p(n), because C) :": G) =35 < IGI for all i = 0, ... ,7. 

If however IGI = 21, then every 6. ,S;;; n such that 16.1 = 2 indeed satisfies 

stab 0(6.)=1. Let finally IGI = 14. Then e~ch of the seven involutions 

of G stabilizes exactly three subsets 6. ~ n of cardinality 16.1 ;= 3. Thus 

the remaining (
7

) '- 21 = 14 such subsets form a regular orbit under the 
,3, , 

~ULVi\BLG l'GitMU1J\1IuN GicuUl'S 

action of G. We next consider p = 5 .. If IGI = 10" then each of:the' five 

involutions of G stabilizes exactly two subsets 6. ~ n with 16.1 =2. This 

immediately hnplies that every subset 6. ~n has a non-trivial stabilizer 

in G. Consquently, also the Frobenius group of order 20 has no regular 

orbit on l.lJ(n). Since p = 3 forces G ~ 53, the proof of the lemma is 
, com':plete. o 

Unfortunately, the proper prime powers less than 81 require a very de­

tailed step-by-step analysis. 

5.4 Lemlna. If Inl = 26
, 52 or 72, tl1en G bas a strongly regular orbit on 

~(n). 

Proof. (1) We first consider Inl = 26, hence 5 :s; G L( 6,2). Let 9 E G#. 

'If 8(g) = 0 or ;(g) = ICv(g)1 I 24, then Lemma 5.1 yields n(g) :s; (Inl :+­
s(g))/2 ::; 40. If 8(g) = 25

, ~hen 9 centralizes a hyperplane of V. Observe 

that the centralizer iq G L( 6,2) of a hyperplane is elementary abelian of order 

32. Thusn(g) = 32 + 32/2 = 48. We set Go = {9E G I n(g) = 48} and 

G 1 = G#\Go. As V h~s exactly 63 hyperplanes', it follows that IGol :s; 63.31. 

By Corollary 3.6, IGI ::; (26 )13/4/2. Recalling the definition 6f the sets 'reX), 

we "abtain I'I(G#)I ::;1'I(Go)1 + 1'I(G1 )1 :s; 248 .63.31 + 240 . (2 6 )13/4/2 < 

2
59 + 259

.'; 260. Now l{fI. ~ n 11fl.1 i 32}1 ~ (;i).~ 260 > 1'r(G#)I, and 

G has a strongly regular orbit on l.lJ(n). . 

(2) Let now Inl = 72.' Since Inl is odd, we only h~ve to establish the 

existence of a regularorbit. To do so note that Lemma 5.1 yields 11(g) :s; 28 

for all gE Q#. Since 5 acts irreducibly' on V, Theorem 2.11 implies 151 :s; 
144. Therefore 

I'I( G#)I :s; 2
28 

. IGI ~ 228 . (144.49) < 242 < 249 = II.lJ(n) I' 

and we have settled case, (2). 

(3) Suppose finally Inl = 52. We first -note that 5 is .isomorphic to a 

subgroup of G L(2, 5) of order dividing 32, 48 or 96 (cf. Theorem 2.11). 
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Vie define Gr = {g E G 1 o(g) = r} and G~ = {g E G2 I 8(g) = i} for 

r = 2,3,5 and i = 1,5. Then each 6. ~ n is stabi1~zed by an element in , 

X := G~ U G~ U G3 U Gs. 
Observe the following values of neg): 

gE neg) 
G~ 13 

G5 
2 15 

G3 9 

G5 5 (because 5 i 151). 

If 9 E Gi, then 9 is a central involution even in GL(2, 5) and hence each 

conjugate of S contains at m~st one such g. Thus IG~I S; 25. Furthermore, 

9 E G~ is contained in five conjugate~ of 5, and G5 = V#. Altogether we 

obtain 

1{6. ~ n 1 stab G(6.) =1= 1}1 S; 1'r(X)1 

S; 2131G~1 + 2151G~1 + 29 1G3 1 + 251G51 

S; 213 ·25 + 215 .5.96 + 29 ·25·96 + 25 ·24 < 225 = 1~(n)I, 

which completes the proof. o 

Whereas in the previous lemma we only needed bounds for the order of 

5, the proof of the next lemn::ta relies on the actual structure of 5. 

5.5 Lelnnla. If Inl = 24, 33 or 25, then G has' a strongly regular orbit on 

~(n). 

Proof. (1) Let Inl = 25. Then Corollary 2.13(8.) implies that 5 is a sub­

group ofT(25). In order to 'guarantee a regular orbit, we may assume that 

S = f(2 5 ) and G = Af(25 ). Recall the permutation ,actions of S on-n and 

V are iSOlllorphic. If 6. ~ n with 16.1 = 3, then 6. is stabilized by sorrie ele­

ment 9 E G of prime order. Since lGI = 25 
• 31 . 5" indeed 9 must centralize 

some 0 E A and consequently 9 is conjllgate to an element of '5. If XE 5#, 

then o(x)' is 31 or 5 and ICv(x)1 is 1 or 2 (respectively). Since the actions 
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of S ori V and n are permutation isomorphic, the orbit pattern for (x) on 

n is (1,31) or (1,1,5,5,5,5;5,5), respectively. Thus 6. is stabilized by no 

elenlent of 5 or G. 

(2) Assume now that Inl = 24. By Corollary 2.15 it is now sufficient to 

,consider the cases 5 = r(24) and 5 = f(2 2)wr Z2. 

We first assume that 5 = f(,24). Let n7 = {6. ~n 1161 = 7}. We may 

assume that each 6. E rh is fixed by some element 9 E G of prime order. 

Since o(g) i 16.1, 9 centralizes some 0 E n7 and so 9 is conjugate to some' 

element or5. If xES has order 3 or 5, then Cv(x) = {OJ and hel1:ce (x) 

has an orbit pattern (1,3, 3,~, 3, 3) or (1,5,5,5) on n. Thus x stabilizes 10 

elements of 6. 7 if o( x), = 3 and none if o( x) = 5. An element y E 5 of order 2 

satisfies Ie v(Y)1 = 4 and y stabilizes (~) 4+ (~) 4 = 140 elements of n7 . 

Furthermore such a y belongs to 4 conjugates of S as I C v(g) I = 4. Since S 

has exactly one subgroup of ~rder 3 and five of order 2 (all conjugate in S) 

and since S has 16 conjugates in G, C:) = In71 :s 16 ·10+ (16· 5·140/4) = 

2960, a contradiction. 

We now consider;the case where S = f(22)wrZ2 asa linear gro.up on 

V. Then V = VI EB V2) where Vi ~ A(22) and Z2 permutes the Vi, Since 

Af(22) ~ Stj, we conclude that G = Af(22) wr Z2 '~ 54 wr Z2" Again 

n and V are pen;nutation isomorphic and we ,may thus identify n with 

{(i,j) I i,j = 1, ... , 4}. Let 6. = {(I, I), (1, 2),(1, 3), (2, 2),(2, 4),(3, I)} and 

choose g E stab c(6.). Then 9 = (gl,g2)E S1'X 54, since three different 

entries appear as first coordinates in 6., but four different ones as second 

coordinates. Now the entry i (i = 1, ... , 4) occ~rs exactly 4- i times as 

·first co?rdinate in 6., which clearly implies tl~at g1 = 1. Similarly, g2 has to 

.fix the sets {1,2} and {3,4}. But as g1 = I, we also see that g2 = 1, and 6. 

generates a strongly regular orbit on.~(n), because 16.1-1- Inl/2. 

(' 



(3) In the case Inl = '33 , we may proceed similarly to case (2). By 

Corollary 2.13(b) namely we have to investigate the possibilities S = r(33) 

and S = r(3) wr S3. 

Suppose that S = r(33
). We let ilu = {tl ~ il I Itll = II}. Each 

element 6. E il is stabilized by some' element gE G' of prime" order. Since 

o(g) =J. 11, 9 centralizes some 8 E tl and ,so 9 is conjugate to some element of 

S. If xES has order 2 or 13, then Cv( x) = {O} and x has exactly one trivial 

orbit on O. Hence x stabilizes (15
3

) elements of 011 if o(x) = 2 and none if 

o( x) = 13. If yES with o(g) = 3, then ICv(y)1 = 3. So y has 3 fixed points 

in 0, y stabilize~ (~) ·3 elements of 0 11 , and y belongs to 3 conjugates of S. 

Since S has op.e subgroup of order 2 and 13 subgroups of order 3 and since S 

has 27 conjugates in G, (in = 10111 ::; 27· en +27·13· G) ~ 27·2015, 

a contradiction. Hence S has a strongly regular orbit on s:}J(il). 

S~ppose finally that S = r(3) WI' S3 ~ Z2', wr S3. Then we have G = S3 

wr S3 and n can be identified with {(i,j, k) I i,j, k = 1,2, 3}, where'the 

base gro~p S3 x S3 X S3 acts componentwise and the S3 outside permutes 

the coor-dinates. "Let t:,. = {(1,1,3),(1,2,1),(1,2,3),(2,~,2),(2,2,3)} ~ n 

and let g E stab c(t:,.). Comparing the occurrence pattern' of the entries in 

the distinct componerits, it easily follows that 9 =' (gl, g2, g3) E S3 X S3 X 

S3, and then that gi = 1 (i = 1,2,3). Th,is completes the proof of the 

lemma. 0 

'5.6 Theorem (Gluck). Let G be a primitive solvable permutation group 

on a finite set il with point stabilizer S. Tilen G has a regular orbit 011 

if}(il), unless one of tbe following cases ocCurs: 

(1) lill=3andG~S3;' 

(2) lill = 4 and G ~ A4 or S4; 

(3) jill = 5 and G ~ FlO or F20 i 

(4) Inl = 7 and G~ F42 ; 

(5) 1~1 = 8 and G ~ Ar(23); 

,(6) Inl = 9 and G is the semi-direct product of Z3 x Z3 with D s, SD 16 , 

SL(2,3) or GL(2, 3).' "' 
i 

,In the exceptional ca.ses, no regular orbit exists. Also, if (fl, G) IS non-

exceptional aIl~1 if lill -=I- 2, UICll tlwrc evcn exists a s~rolJglJ' regular Ol·hit 011 

s:}J(il). 

,Proof. By Proposition 5.2 and Lemmas 5.4 and 5.5, G has a strongly reg­

ular orbit on s:}J(n) provided that Inl ~,81 or Inl = 24, 25
, 26

, 33, 52 or 

72
. If Inl = 2, then G = Z2 and G has a regular, but no strongly regular 

orbit. iflill is an odd prime, then a regular orbit automatically is strongly 

regular, and Lemma 5.3 tells us that the exceptions <:tre precisely given by 

'(1),(3) and (4) above. Let next lill = 22. Then G,~ A4 or S4 and in both 

-' cases no regular orbit-onif}(f2) exists. Thus we still have to discuss the cases 

lill = 23 and 32
, 

If Inl ='23 , Corollary 2.13(af'yields S::; r(2 3 ). If equality holds, then 

every subset 2. c;: 0 has a non-trivial stabilizer; because (~) < 168 = 
IAf(23 )1 = IGI for i = 0, 1, ... ,8. Otherwise we have lSI = 7, since S acts 

irreducibly on the minimal normal subgroup V of G. As V is an elemen­

tary abelian 2-group, every subs~t X ~ V of cardinality three has a trivial 

stabilizer in G and thus generates a strongly regular orbit. 

Let finally lill = 32
. Then S ... is' an irreducible subgroup of GL(2,3). 

By Them'ern 2.11, S is a subgroup of Ds, or a subgroup of SD 16 , or is 

isomorphic to Qs, SL(2,3) or GL(2,3). If S = GL(2; 3), SL(2,3) or SD 16 , 

then· (~) < IGI for all i and no regular orbit exists. Since S acts irreducibly, 

the remaining possibilities for S are Ds, Qs, Zs and Z4' Let first S= D s , 

and consider SD l6 ~ T E Sylz( G L(2,3)) with S S; T. Note that both Sand 

T have 5 involutions. By the Sylow Theorems, it follows that every element 

of prime order in VT is in Y S. As each ,x '~ V has a non-trivial stabilizer 

in VT, it follows that G = V S as well has no regular orbit, on s:}J(il). In 

each of the cases S = Qs, Zs and Z4, the group S acts fixed-point-freely 

on V and contains exactly one involution. Consequently G= V S contains 
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exactly 9 involutions and their orbit' pattern on V is (1,2,2,2,2). The orbit 

patterri of the 8 elements of G of order 3 is (3,3,3). Thus stabo (6.) is a 

2-group whenever 161 = 4. Each involution in G stabilizes (;) subsets of 

order 4 of n. Since (:) > 9· G)' some X <:;i1 with IXI = 4 is in a 

regular orbit of G on ~(n). 0 

We draw two Corollaries from Theorem 5.6. The first will be needed in 

§17, and the second is an essential ingredient of§9. 

5.7 Corollary. Let G be a solvable permutation group on a finite set n. 

(a) Tllere exists a subset 6'~ n such that stabo(6Yis a {2,,3}-group. 

Here, 6 can be clwsen to have non-empty intersection with every 

orbit of G on n. 

(b) If IGI is odd,' then there exists a regular orbit of G on ~(n). 

Proof. (a) Let n 1 , ... , nn be the orbits of the action of G on ~(n). If 

we can find subsets 6.i ~ n j (i = 1, ... ·, n) such that stab C(6.i)/CC(nj) 

is a {2,3}-group, then obviously 6. = 6 1 U ... U 6 n satisfies the desired 

condit.ion. Notc tha.t wc may US:;UlllC that '6. j =I- 0, i:;iuce otherwise 6.i = n j 

can be taken. Hence we may assume G to be transitive. 

We first su'ppose that G acts primitively on n. We in fact prove the 

existence of 6. ~n, 16.1 =I- Inl/2, such that stab 0(6.) is a {2,3}-group. 

This is cert~inly clear if G has a strongly regular orbit on ~(n). Therefore, 

we have to consider the exceptional cases of Theorem 5.6. If Inl = 2, 3, 4 

or 9~ we can take 6. = n. If Inl = 5, '7 or 8, any subset 6. with 16.1 = 1; 1 

or 2 (respectively) works. 

If G is imprimitive, let H denote the point stabilizer of ex E n. We fix a 

subgroup J such that H < J < G and H i~'maximal in J. If we choose {gl = 

1, 92, .. ~ , g d as right coset representatives of J in G, we set Jj = J 9i and let 

6. i be the Jj-orbit of exgj (i = 1, ... , t). It. then follows that n == 6. 1 U ... U6.t, 
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stab C(6.i) = "Ji and G transitively permutes the 6.i. Let I( =ni J j . Then 

G /]( faithfully permutes the 6.i and hence {I; ... , t}. Since t < In /, we 

may choose by induction s ~ 1 such that stab OJ 1\( {I, ... , s}) is a {2,3}­

group. Since J i primitively permutes 6.i) the previous paragraph yields 

theexistence of 3i ~ 6.j, 13d =I- l6.il/2, such that stab Ji(3 i )!C Ji (6.J is a 

{2,3}-group. IIi 'particular, stab K(3 i)iC K(6.i) is a {2,3}-group, because 

]( ~ Jj. We may clearly assume that 13il > l6.d/2 if and only if i ~ s. 

Thus 3 := U~=13i ~ it is non-empty. Since ni C[((6i) = 1, 

is a {2,3}-group. By, the choice of s, also 

stab c(3)/stab, [((3) ~ Ie· stab 0(3)/]( ~ stab Cj 1(( {I, ... , s}) 

is a {2, 3}-group, and thus the same hoh1s for stab c(:~). 

(b) By Theorem 5.6, every primitive permutation group of odd order has 

a strongly regular orbit: on ~(n). But then a. similar induction argument '1.S 

in ( a.) yields a.ssertioll (b). 0 

5.8 Corollary. Let G be a primitive solvable permutation group on a finite 

set D. Let q be a prime divisor of IGI, and assume that for all 6. ~ n, 

stab c(6.) contains a Sylow q-subgroup of G. Then one of the' following 

cases occurs. 

(i) I n I = 3, q = 2 and G ~ D 6; 

(ii)lnl = 5, q == 2 and G ~ D 10 ; 

(iii) In', = 8, q = 3 and G ~ Af(23 ). 

Proof. We first eliminate cq.,se (6) of Theorem 5.6. Here we must have 

. q = 2 and we fix Q E Syl q(G). Since Cv(Q) = 1, Q has exactly one 

fixed' point on n. Since Q mu~t stabilize a· set of size j' for all j ~ 9, the 

possible orhit sizes of Q a.re (1,2,2,2,2) and (1,'2,2,4). Let us denot.e by 

t the Humher of subsets of n of size 4 t.hat (lie fixed by q. Observe that. 



t :S 6. Since ISyl,( Gli . t 2: (~), andsince ISyI2( Gli I 3" it foilowsthat 

/Sy1 2(G)/ = 27 and t ~ 5. Thus the orbit sizes ?f Q are (1,2,2,2,2) and 

Q is elementary abelian. This is a contradiction, because GL(2, 3) does not 

contain a.n elementary abelian subgroup of order 8. We ~lext elimina.te case 

(4) of Theorem 5.6. If ~ = 3, the orbit sizes of Q E SylJ,( G) are (1,3,3), 

and thus no subset' 6. ~ n of cardinality two can be stabilized. If on the 

other hand ~ = 21 Q E Syb( G) has orbit sizes (1,2,2,2). Now the number 

of subsets 6. ~ n such that 16.1 = 3 and such that Q ~ staba(.6) equals 3. 

Since ISyl,(G)1 = 7, we obtain 7·3<35 = (~), a contradictiOl~. 

The remaining cases of Theoi'em 5.6 which do not appear among (i)-(iii) 

can be easily ruled out hy considering orbit sizes of Sylow q-subgroups. 

o 

§6 Solvable Doubly Transitive Pennutation Groups 

In the 1950s, Huppert classified the solvable doubly transitive pennuta­

tion groups on a set n. Such a group G is certainly primitive ([Hu, II, 1.9]) 
, , 

and hence contains a unique minimal normal subgroup V that acts regulady 

011 n. In purtieuI'ar, IVI = Inl = qH for a prime q. F\U'titermorc, VGO' = G, 

V n GO' = 1 and GO' acts faithfully on V. Since [) is doubly transitive, GO' 

acts transitively on V#. Now Huppert's result, which has many uses as 

y we shall see later, states that G may be identified as a subgroup ofAr( q n) 
or qll = 32 , 52, 7~, '11 2 ,232 or 31 . Huppert's origirial proof did not use 

Zsigmondy's prime theorem, bu~ that was later modified in [HB, chap. XII]. 

Another approach is given in Passman's book [Pa 2]. We present a different 

proof which expi~its the Zsigmondy' priule theorem fully. 

6.1 Definition. ~et a > 1 and n be positive integers. A prime p is called a 
• I','; 

Zsigrnondy'prirne divisor for all -1 if jJ I an -1 but p f a J - 1 for 1 :::; j < n. 

(Note tlutt this is dependent upon a and n and not just on a l1 
- l.) If p is 

a ZSigmoiidy prime divisor for an - I, then n is the order of a. module p. 

.. I" ,. 

Hence nip - 1. 

6.2 Theorem. Let a > 1 and n be positive integers. Tllell there exists a 

Zsigmondy prime divisor for an - 1 unless 

(i) n == 2 and a = 2k - 1 for some kEN, or 

(ii) n = 6 and a = 2. 

Proof., See e.g. [HB, IX, 8.3)". A short, elementary proof is also given by 

Liineburg in [Lii 1]. 0 

6.3 Proposition. Assume that G is a solvable subgToup of GL(n, q), q a, 

, prime power. Suppose th~t p IIGl where p is a Zsigmondy prime divisor of 

qn - l. Let P E SylfJ{ G) and V be tile cOITespolldillg G-l~lOdule. Then 

(i) G acts ilTec/ucibly ~d quasi-primitively on V, and 

(ii) P is cyclic, 

Proof. We may assume that n 2:: 2 and p > 2. Let x E P denote an 

element of order p. Since p f qi - 1 'for all j' < n, (x) and hence G act 

irreducibly on V. If V is not quasi-primitive, we may choose C <l G such 

that Ve ,= VI ED ... ED'Vm for non-zero C-modules Vi permuted faithfully by 

G/C. Since 1n ::; n < p, P fixes each Vi, whence P :::; C and x E C. Now 

(x) and hence C act irreducibly on V. Thus m = 1 and C =G. This proves 
(i ). 

Applying (i) with P = G, we have that P acts irreducibly and quasi­

primitively on V'. Thus, every normal abelian subgroup of P is cyclic. Since 

p > 2, P is cyclic, by Corollary 1.3. 0 

If? is a transitive subgroup of GL(n, q), then IGI is divisible by all 

Zsigmondy prime divisors of qlt - 1. In all but a few cases, /F( G)I will be 

divisible by a Zsigmondy prime divisor of qn ~ 1, and as Lemma 6.4 shows, 

this forces solvable G to be a s\lbgroup of r(qll). Lemma 6,7 will IWlldk 
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the exceptional cases where IGI is divisible by a Zsigmondy prime divisor of 

.qfl _ 1, but IF( G)I is not. 

6.4 Lenuna. Assume tila't G ~ GL(n, q) is solvable (q a prime power). 

Suppose that p I IF( G)I for a Zsigmondy prime divisor p of qfl - 1. Let" 

P E Sylp(G). Then 

(i) G ~ f(qn). 

(ii) Wilen 1 f:. Po ~ P, then F(G) = CG(Po) ;::: P .. 

(iii) F(G) and GjF(G) are cyclic, IF(G)II q71 -'-1 and IGjF(G)11 n. 

Proof. We may assume· that· n > 1 and p > 2, arid we choose PI ~ P 

with IPII = p. The hypotheses of the lemma imply that P n F(G) f:. 1, 

. and thus P1 :::; F(G), because P is cyclic (Proposition 6.3). Also PI ~. G 

and P1 ~ Z(F(G)). By Proposition 6.3 and Lemma 2.9,the natur'al module 

. V of GL(n,q) is an irreducible PI-module and CG(PJ) is cyclic .. Thus 

F( G) = CG(PI) ;::: P and F( G) is cyclic. Part '(ii) now follows. 

Since PI acts irreducibly o~ V, Theorem 2.1 implies that G :::; f(qn) =: f. 

Now P lifo!, where fo ~ fisthecyclic subgroup of m~ltiplications of order 

qH _ 1. Thus p IIF(f)1 and the arguments of the last paragraph apply to 

f as well. It follO\~s that PI ~ P ~ F(f) = Cr (PI)' F(f) is cyclic and· 

F(f) = f o. Also f (F(f) is cyclic of order n. Because 

F(f) n q ~ F(G) = CdPl) n G ~ F(f) n G, 

we have that F( G) = G n F(f) and the result follows. o 

The key to finding the exceptional cases of Huppert's Theorem is descrIb­

ing tl;ose solvable groups G ~ GL(n, q) whose Fitting factor group GjF(G) 

is divisible by a Zsigmondy prime divisor of qTt - 1. Before we do so, we 

stop q,nd study the structure of semi-linear groups in more detail. 

SOLVA UtE PLithl UTATIO;~ CIlOUPS 

6.5 Lelnma. Let f = f(<in) and fo = fo(qll) for a prime power q. 

(a) If n = 2 and q E' 9n, then f = R x S wl1ere R is a non-abelian 

2-group and S is cyclic of odd order. 

(b) If qll = 26
, then fo = F(f). Let Sand T be tile unique subgroups 

of fa of order 3 and 7, respectively. Tilen ICr(S)/fal = 3 and' 

ICr(T)/fol = 2 .. 
. . 

(c) In all other ca.ses, fa = F(f). For each Zsigmondy prime divisor p of 

qH _ 1 a.nd eac1] non-trivial p-subgroup Po of f, fa = Cr(Po) ;::: Po. 

Proof. Recall that f has a cyclic subgroup B = ((3) of order n consisting 

offield automorphisms, f = foB and fonB = 1. IfU ~'fo) then CrCU) = 
fOCB(U) . . For a E B of order t, it holds that ICro(a)1 = qll/t_l. 

If n = 2 and q E 9)1, Cro (f3) has order q - 1 and thus contains the Hall 

2'-subgroup of f. Part (a) now follows . 

Assume next qn = 26 
•. Since ICro (f32)1 = 3 andICro(/,3)1 = 7, we have 

that ICr(S)/fal = 3 and ICr(T)jfal = 2. Clearly fo~ F(r), and equality 

follows, since (32 does not act trivially on T E Syl7Cfo) and f33 does not act 

trivially on the Sylow 3-s'ubgroup of fa. 

If (a) or (b) does not apply, then qfl - 1 has a Zsigmondy prime divisor 

p, by Theorem 6.2. Therefore p Ilfol, whence p IIF(f)l. By Lemma 6.4, 

F(f) = Cr(Pa) is cyclic and contains Po. Since each subgroup of f whicl~ 

properly contains fa is non-abelian, fa = F(f) follows. 0 

6.6 Corollary. Suppose tilat G ~ f(qll) and p IIGI for a Zsigmondy prime 

divisor p of qn ~ 1. Then p IIF( G)I and Lemma 6.4 applies. 

Proof. Let P E Sylp( G) and write r for r( qfl). ByLemma 6.5 (c), r has 

. a unique Sylow p-subgroup, and therefore 

o 



We let F I ( G) ~ F2 ( G) ~ ... denote the ascending Fitting series, i.e. 

'F1(G) =i: F(G) and Fi+1(G)/Fi(G) = F(G/Pj(G)). 

6.7 Lelnrna. Suppose that, G is a solvable subgroup ofGL(n, q) (q aprime 

power) and p is a Zsigmondy prime divisor of qll -' 1. Assume also that 

p jIC/F(G)I·Then p t IF(C)I and 

(i) n = p - 1_ = 2m for an integer rn ='= 2k 2: 1; 

(ii) F( C) = ET where E ::1 C is an extra-specia12-group of order 22m+1 , 

T is cyclic, T = Z(~) a.nd Tn E = Z(E); 

(iii) T ~ Z( CL( n, q)) and ITlj q - 1; 

(iv) F2(G)/F(G) is cyclic of order p, a.nd G/F2(G) is a cyclic 2-grotlp 

witil IG / F2( G)I j'21n: 

'Proof. By Lemma 6.4 and Corollary 6.6, p t IF(G)I and G i r(qll). In 

particular, n > 1 and p > 2. L~t V be the corresponding G-module of 

order qll and let P E Sylp( G). By Proposition 6.3, P is cyclic and V is 

, an irreducible quasi-primitive G-m~dule. Since G i. f(qll), Corollary 2.3 

implies that F( G) is non-abelian. Set F = F( G), F2 = F2( G) and Po ~ P 

, with IPol = p. 

Let A be a norlllal abelian subgroup of G. Then, A is cyclic, because V is 

',quasi-primitive. If P i CoCA), then every faithful c.p E Irr (AP) has degree 

divisible by p. Note that (q, IAPI) = 1 by the choice of p and since A ~ F. 

, Then Lemma 2.4 implies tl:at p ~ dimoF(q)(V) = n, -a coritradiction to, 

, n j p - l. Hence P ~ CG(A) for ail abelian A ::1 G. 

Since Ce(F) ~ F, we may choose a prime i and a Sylow i-subgroup R of 

::F with Po i Co(R). By the last paragraph,'R is non.,abelian. Every normal 

abelian subgroup or G is cy~lic and we apply Theorem 1.9 t? conclud~ that 

: .. R = ES with E, S ::1 G such that EnS is the ullique subgroup Z of Z(R) 

"i of order 1', E is extra-special or E = Z, and S has a cyclic subgroup U ~ C 

with IS: U] :::; 2. By the last paragraph, P ::; CG(U). Clearly, P centralizes 

S/U and 1>:::j: 2. Thus P centralizes S. Since V is a.n irreducible P-module 

(see Proposition 6.3), Co(P) is cyclic by Lemma 2.9 and hence S is cyclic. 

As R is non-abelian, E > Z. . 

Let H= EP. Then Vii is irreducible and quasi-primitive, by Proposition 

6.3. Now Po acts faithfully on E/Z and we may choose a chief fadoi' EdZ 

of H such that Po and P act faithfully on E1/Z. Furthermore, applying 

Theorem 1.9 to H, we may as~ume that Z = Z(E1 ) and El is extra-special, ' 

say IE1 /ZI = 7,21. Since P centralizes·Z, P is a cyclic irreducible subgroup of 

Sp(21,i). Consequently, IPI/ i l + 1 (see [Hu, II, 9.23]). Now IE/ZI = r2m 

for an integer Tn 2: 1 and Corollary 2.6 implies 'that dim(F) = fr·m dim(vV)­

for an irreducible S-:submodule VV of V and an integer t. Then 

Equality must hold throughout. Thus P has order j), p= 7. 111 + 1 is a Fermat 

prime, l' :;=: 2 (;l,nd 7H is a power of 2. Also dim(V) = 11 = 2111 and I = 1H, i.e. 

E/Z is a chief factor even in G. 

vVe chose R to be a Sylow 1'-subgroup of F not centralized by P, = P and 
I . 0 

proved that l' = 2. Thus P centralizes S1 E Ha1l2/(F). Let T = SSl ~ C 

and note that T ~ Ce(P). Thus T is cyclic by Lemma 2.9, F =, ET 

and En T = Z = Z(E). Also T ~ Z(GL(V)) by Lemma 2.10 (iii), as 

n= dim{V) = IE/ZI 1
/

2
• Parts (i), (ii) and (iii) now follow. 

" 

Since p = 2m + I, p is a Zsigmondy prime divisor of 22m - 1. If also 

p t IF2/ FI, then (ii) applied to the faithful action of G / F on E / Z implies 

that 02( G / F) ::j: I, a contraclictioll because E /Z has characteristic 2. Hence 

p IIF2 /FI, and ,Lemma 6.4 implies that F 2 /F,and G/F2 are cyclic with 

IG/F21 1 2m. By Proposition 6.3, F2/F acts irr~ducibly on E/Z. Again 

employing [Hu, II, 9.23], we have' that IF2/ Fr I 2m + 1 = p. Hence G / F2 ~ 
Aut (Zp) which is a cyclic 2-group of order 2m. But we also know that 

IG/F2 1/ 2m.This proves (iv). 0 

6.8 TheoreIll. Let V be a. vector spa.ce of dimension n over G F( q), q a ' 

prime power. Suppose that G is a soh;able subgroup of GL(V) that transi-' 
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tively permutes the elements ofV#. Then G ::; r( qn), or one of the following 

occurs: 

(~) qll = 34, F(G) is extra-special of order 25
, IF2(G)/F(G)1 = 5 and 

GIF2(G) :::; Z4. 

(b) qn = 32,52,72,11 2 or 23 2 . HereF(G) = QT, where T = Z(G) :::; 

, Z(GL(lI)) is cyclic, Q8 ~ Q :s! G, Tn Q .= Z(Q) and QIZ(Q) ~ 

F( G)IT is a faitl1ful irreducible G IF( G)-module. We also have one 

of the following en tries: 

qn ITI G/F(G) 

32 2 Z3 or S3 
52 2 or 4 Z3 
52 4 S3 

72 2 or 6 S3 
112 10 Z3 or S3 

232 22 S3 

Proof. We may assume that n > 1. Since G acts transitiv,eiy on 11#, V is 

anjrreducible quasi-primitive G-module and qn - 1 IIGI. 

Snppose£irst. tha.t n = 2. We lIlay assume t.hat G i r( q2). Then Theorelu 
. . 

2.11 implies that F(G) = QT where Q8 ~ QS! G,T = Z(G) ::; Z(GL(V)) 

is cyclic, ITI I q - I, Tn Q = Z(Q), GIF(G) is isomoq)hic to .23 or 53 

and GIF(G) acts faithfully on QIZ(Q). Now IGI = IGIF(G)IIF(G)ITIITI 

divides 24( q - 1). But q2 - 1 IIGI and so q/ + 1 I 24. Since 02( G) -:f=. 1, q 

is odd, and q =3, 5, 7, 11 or 23. Counting yields conclusion (b) or that 

qn = 52, ITI = 2 and GIF(G) ~ 53' In this 'case, IGI = 24·2. Fix v E V# 

so that ICG(v)1 = 2. Also F(G) n CG(v) = 1. Now F(G) :s! 5 ~ G where 

IGI51 = 2 and S also acts fixed-point-fre'ely on V#. Now let Z= Z(GL(V)) 

, so that IZI = 4 and Z n G = T has order 2. Set G 1 = ZG, then IGII = 21GI 

and GllS ~ Z2 x Z2. Also set H = C G1 (v). Since IGII = 4·24, we have 

that IHI =,4, H n S = 1 and HS = Ct. Thus H ~ Z2 X Z2' Since q f IHI, 
II acts fai qlfully on the one-dimensional space 111 (v). Thus H is cyclic, a 

cont.ra,diction. Vife may now assume that n > 2. 
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If secondly q = 2 and n = 6, then 63 IIGI. Since V is a quasi-primitive 

G-module, Co~ollary 2.15 implies that G S; r(26
). In the remainiilgcase,s,. 

Theorem 6.2 allows us to choose a Zsigmondy prini.e divis'or p of qll - 1. By' 

Lemma 6.4, we may also assume that p t IF(G)I. Applying Lemma 6.7, we 

have that 

. (i) n = p - 1 == 2m for an int.eger m; 

(ii) F( G) = ET where E :s! G is an extra-sp~cial gToUp of order 22m+1 , 

T = Z(G) :::; Z(GL(V)) and En T = Z(E); 

(iii) F2(G)/F(G) is cyclic of order p; 

(iv) C I F2 ( G) is a cyclic 2-grollp with onler dividing 2m. 

In particular, IGI· = IG I F2 ( G)II~2( G)/F( G)IIF( G)ITIITI indeed divides 

2· m· p. 22m. (q -1) and p is the only odd prime dividing IGI/( q -1). By the 

transitive action, (qH -: l)/(q -1) IIGI/(q -1). If n = 2m ;::: 8, then qn/2_1 

has an odd Zsigmondy prime divisor Po -:f=. p which must divide IGI/( q - 1), 

a contradiction. By (i) just above, we are left with 7i, = 4. Then p = 5 alld 

m = 2. Now (q4 .- l)/(q'~ 1) divides 26 ,,5. Thus q3_ ~ 26 ·5 and' q = 3. 

Becatise T ::; Z( G L(V)), ITI I q - 1 = 2 and F( G) is extra-special of order 

25
. Observe .that conclusion (a) of the theorem is satisfied. 0 

Ari example due to Bucht. is presented in [HB, XII, 7.4] of a solvable group 

G ::; GL(4,3) such that'lGI = 27 ·5, G has subgroups G 1 2: G2 of index 2 

ind 4 viith G 2 (and hence GI and G) transitive on V#. Furthermore, G 2 

(and hence Gland G) is not a sul?group' of r(34 ). For <:ach of the other 

exceptional values of qn and corresponding va.lues of IGI given in Theorem' 

6.8, there is a solvable subgroup G :::; GL(n,q) with .c i .r(ql1), but G 
transitive on 11#: We refer the reader ~o Huppert's original paper[Hu 2]. 

Theorem 6.8 can now be stated in terms of doubly transitive permutation 

groups. To avoid redundancy, we do not list the structure of the exceptional 

cases" which again do exist. The proofs of ~his section were derived by'Volf 

with encouragement from P. Sin. 

6.9 Theorenl (Huppert.). IfG is a solvable doubly transitive permutCli,ion 



group on il, tllell lill = qU for a prime q and G ::; Ar( qn) unless qn = 32, 52, 

72
, 11 2

, 23 2 or 34
• In tile .non-exceptional cases, the unique minimal normal 

- subg;l'oup of G is A( q7l). 

Proof. Since G is 2-fold transitive, G is in fact primitive (see [Hu, II, 1.9]). 
. . 

Then, by solvability, G has a unique minimal normal subgroup V that acts 

regularly on fl, VGO' = G (ex E il), V n GO' = 1 and .the actions of GO' on 

il and V are. permutation isomorphic. Thus GO" transitively permutes the 

elements of V#. If qll =/=32, 52, 72,112,232 or 34 , then GO' ::; r(qTt), by 

Theorem 6.8, and G ::; Ar(q71),by [Hu, II, 3.5]. 0 

SUPI)ose that G :::; GL(n,p) is solvable and irreducible (p a prime). Let 

V be the correspolldiilg natural module, a11(11' be the Humber 6f orbits of G 

on V#. Theorein 6.8 states that when l' = I, then G ::; r(p71) or pH is one 

of six values. In [Sa 1], S. Saeger shows' that if G is primitive (as a linear 

group) and if r' ::; pU/2 /(12n + 1), then G ::; r(p;l) or'pHis one of 174, 19\ 

'76
, 58, 78

, 138
, 79

, 316 or 516
. Of course, when 7' = 1, it is easy to see that 

G is a primitive linear group. However, the inequality. cannot· be lnet for 

small values of pH, including tife exceptioli-a.l values in Theorem 6.8. 

§7 Regular Orbits of Sylow SubgrouI?s of Solvable 

Linear Groups 

In this section, we return to the study of regular orbits of a p-group P. 

But this time we consider P as a Sylow p-subgroup of some solvable linear 

group in characteristic p, and present aremarkable result due to A. Espuelas 

[Es 1]. Our proof however is difFerent from Espuelas' o,~~e; whereas he uses 

tensor induction, we rely on the methods developed so far. We shall also 

use a' r~sult whi<* admittedly does not lie at the surface, but which is often 

helpful when studying indecomposable modules for p-nilpotcnt groups over 

arbitrary fields of characteristic p, namely: 

7.1 Proposition. Let G be p-nilpotent and V a finite-dimensional inde­

composable IC[G]-module, char (IC) = p > O. If 

o = Vo -< VI < ... < Vn = V 

is a' composition series of V, tben all composition factors Vi/Vi - 1 (i 

1, ... ,n) are mutu~lly isomorpilic. 

Proof.' Since V is indecomposable, V belongs to a block of Je[G] and all its 

composition factors belong to the same block (see [HB, VII, 12.1)). Since G ' 

is p-nilpotent, each block of IC[G] only contains one irreducible IC[G]-module 

(see [HB, VII, 14.9]) and the assertion follows. 0 

The next lemma, which will as well become important ill Cha.pter III, 

has some conn.ections to the Hall-Higman results (see [HB, chap IX] and 

the remarks following the lemma). Our techniques ar~ elementary and wo~k 
for arbitrary fields. 

7.2 Lemma .. Suppose that Z := Z(E) ::; E ::1 H with IH: £1 = p, p f lEI 
and E/Z is an abelian q-group for . primes p and q. For P E Sylp(~), 

~.ssume t~at PiC J-I(E). Let V be a finite~dimensional H -module wi;~h 
char (V) f lEI stIch tha.t VE is faitilful and llOmogeneous. Tilen !) , 

. )~ 

(i) dime Cv(P)) :::; dim(V)/2; or 

(ii)p = 2, P ::; CH(Z) and dirn(Cv(P)) ::; ((q + 1)/(2q))· dim(V). 

Proof. vVe argue by induction on IHI. Note ~hat PiC H(E) implies 

E =/=1. Since VE is homogeneous a~d Z= Z(E), Vz is homogeneous. Thus 

Z act~ fixed-point-freely OIl V and is cyclic. 

If Z i Z(H), we may choose 1 =J Y :::; Z with Y S1 H and Y P a. Frobe­

nius group. Since Cv(Y) = 0, Lemma; 0.34 implies that dim(Cv(P)) ::; 

(dim(V))jp.. We may thus assume that Z ::; Z(H) and E > Z. Let 

LjZ = [E/Z, P], reca.ll that VE is homogeneous and write VL = VI Ef\ .. ·Ef\VTi 
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for homogeneous components Vi that are transitively permuted byE/ L. 

Now V/ again is a homogeneous L-module (g E P, i = 1, ... , n), and thus P 

permutes the Vi. Since P centralizes E/L, Glauberman'sLemrria 0.14(a,b) 

implies that P fixes each Vi. Set Ci = C L(Vi ), i = 1, ... ,n, and suppose that 

(P, L] ~ Cj for some j. Since E/Z = L/Z X CE/z(P)and E/ L ~ C E/Z(P) 

transitively permutes the Vi, we then have [P, LJ ::; n:~l Cj = 1. This 

iinplies that P centralizes L, E/ L and hence E, a contradiction. Thus 

[P, L/Cd =I- 1 for all i. If L < E, we apply the inductive hypothesis to the 

action of PL/Ci on Vi (i = 1, ... , n) and the conclusion of the lemma holds. 

We may therefore <\.ssume that L = E. 

Let AI/Z be a minimal normal subgroup of H/Z. First assume that ViH 

is not homogeneous and write VM, = VV1 EB ... EB 1VI (1 > ~ 1) for homoge­

neous components vVj that are transitively permuted by E / M. Again P 

permutes the vVj • Since CEIM(P) = 1, Glauberman's Lemma O.14(a,b) im­

plies that P fixes exactly one Wj and permutes the others. Thus p 11-1 and 

dim(C v(P)) ~ (1 + (1-1)/p)· dim(Wd. For p odd, it suffices to show that 

1 + (l-I)/p ~ 1/2 or equivalently that (1/(l-I)) +(2/p) ~ 1. This holds as 

1-1 2:: p 2:: 3. For p = 2, it suffices to show that 1 + (l-1)/2 ::; [. (q+l)/(2q) 

or equivalently that q ~ l. But this follows, since the q-group E/1I1 transi­

tively permutes the 1 homogeneolls' components lVj. Thus the result holds 

when VM is not homogeneous and we lllay assume that liM is homogeneous. 

Since [1I1/Z, P] =I- 1, P acts non-trivially on 111. Thus if. M < E, the 

result follows frOID the inductive hypothesis applied to M P. Hence E / Z is 

a chief factor of II. Since P centralizes Z = Z(E), but does not centralize 

E, we also h~ve E' =I- 1. 

Let 0 =I- x E Cv(P). As CE(X) ~ CE(x)Z/Z is abelian, CE(x)Z is an 

abelian normal subgroup of H. Thus the last paragraph implies CE(x) ~ Z 

and C E(X) = 1. Let P~ E Sylp(H) with Po i- P. Then 1 i- [P, Po] :::; E and 

(P,Po] centralizes Cv(P) n Cv(Po). Consequently Cv(P) n'Cv(Po) = 0 

and clim{Cv(P)) ::; (dim(V))/2 follows. 0 
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As indicated before, Lemma 7.2 can also be proved more heavy-handedly 

by Hall-Higman techniques.' The ad~antage of this appr~ach however is 

that it clarifies the module structure of Vp in the case where P S;, CH(Z), 

E is extra-sp~cial andrE / Z, P] = E /Z. We may also assume that V is an 

indecomposable H-module and that the underlying field F is a splitting­

field. In this situation the proofs of [Hu, V, 17.13] and [HB, IX, 2.6] yield: 

(1) char(F) # p, XP = mp + 81L, where X is tl~e character of V, p is 

the regular character of F[P], J-l is a linear charadeI', m ·E Nand 

/) = ±l. 

(2) char (F) = p, Vp = 7n· F[P] EB VV, where 1V is an indecomposable 

·F[P]-module (possibly W = 0) and mEN. , 

If p :> 2,the estimate of Lemma 7.2 immediately follows. If p = 2, the only 

critical case is where J-l = 1 p or W ~ F. Then q ~ dim(V) = 2m + 1, 

. dim(Cv(P)) = rn + 1 and we obtain 

dim(Cv(P)) = m + 1 ~ ((q + 1)/(2q))· (2m + 1) = ((q + 1)/(2q)). dim(V). 

7.3 Theorelll (Espuelas). Let G be a solvable group, p an odd prime, 

P E Sylp( G) and 0 1)( G) ='1. Let V be a fln.!te and faithful G-module with 

char (V) = p. Tilen P has a regular orbit 011 V. 

Proof. We proceed by induction on IGI IVI· 

Step 1. G = OP' (G) is p-nilpotent with nilpotent p-complement F = F( G). 

Proof. Since P ::; OP'( G) and Ope 0 1/ (G)) = 1, induction yields G = 
OP'(G). We also have Op(FP)= 1 and thus, again by induction, G = FP 

is p-nilpotent with p-complement F. 

Step 2. V is an irreducible G-module. 

Proof. We first decompose V = h EB· .. ED In into indecomposable G-modules 

Ij and pick an irreducible G-submoclule IvIj ::; Ii (j '= 1, ... ,n). Sihce G 



, is p-nilpotent; Proposition 7.1 implies that each G-composition factor of 

Ij is isomorphic to Mj. Consequently, we obtain for the pi_group Fthat 

,CF(A1j ) = C~(Ij) and thus n;~l CF(Mj ) = n;l~l CF(Ij ) = CF(V) = 1. 

'Since 0 1/ G) ~ 1, G acts faithfully on the completely reducible module 

, Afl EB· .. EB lvIn and the inductive hypothesis implies V ~ lvII EB ... EB Afn . If 

11, > 1, then PICp(lvIj) S; G/Ce(Mj ) has'a-regular orbit on Mj, generated 

by Vj E Aij (j = 1, ... , n). Si~ce then v = VI + ... + Vn generates a regular 

orbit for P on V, Step 2 holds. 

, Step 3. V is quasi-primitive. 

Proof. Suppose there is M S! G such that VM = VI EB ... EB Vm with m > 1 

homogeneous components Vi that are transitively permuted by G. It follows 

from Clifford's Theorem that Vi i~ an'i;'r:educible Ne(Vi)-module and hence 

. 'Op(N e(Vi)/Ce(Vi )) = L Note further that 

,Np(Vi)/Cp(Vi ) = Np(Vi)/(Ce(Vi) () Np(Vi )) 

== Np(Vi)CC(Vi)/Cc(Vi) ~ Nc(Vi)/Ce(Vi)., 

Since m > 1, the inductive hypothesis shows tliat Np(Vi)ICp(Vi) has a 

regular orbit on Vi (i = 1, ... , m). 

, Also P permutes tbe subspaces VI, ... , Vm (possibly iutransitively). Since 

p > 2, the exceptional cases of Lemma 4.3 cannot occur, and P has a regular 

, ", orbit on V. This completes Step 3. 

As an immediate conse~uence, we obtain 

, Step 4. Let Z = Z( F). Then Vz ~ WEB· .. EB ltV for an irreduCible Z-moclule 

W, Z acts fixed-point-freely on Wand IZIIIWI - 1. 

Step 5. P S C C (Z), i.e. Z = Z(G). 

Pioof. Set C = Cp(Z) and assume C < P. Note that OjJ(ZP) = C and 

F(ZPIC) :::::: ZCIC. Let 0 = Vo < VI < '" < Vt = V be a compo~ition 

• I 'i, J i , . ; ~ l ~ i . I ... .'.. • 

series of V considered as a Z P-module. Then each Vj IVj -1 is an irreducible 

and faithful ZP/C-module. By Step 4, 

(Vj IVj-I)ZC/C'2i. (VjIVj-dz '2i. WEB··· ED vV, 

and it follows from Lemma 2.2 and Corollary 2.3 tl~at (VjIVj-t}z ~, vV' 
(j = 1, ... , t) and that ZP/C is a subgroup ofa semi-linear group. In 

particular PIC ~ (ZPIC)/(ZCjC) is ~yclic. 

Since C < P and Op(FC) ~ 1, we may apply the inductive hypothesis 

to the action of FC on V, and we thus find v E V generating a regular 

C-orbit on V. Choose j E {I, ... , t} such that v,E Vj \ Vj-I' Since VjlVj - 1 

is irreducible as a Z-module, VjlVj-1 is spanned by {VZ + Vj-I I z E Z} as 

a vector space. By the previous paragraph, PIC is cyclic and we can thus 
, ' 

find y E Z such that C I' / c( v Y + Vj -1) = 1. Since 11 generat.es a. regular 

C-orbit and since [Z, C] = 1, v Y as well generates a regular C-orbit. Thus 

C p( v Y ) S; Cc( v Y ) = I, aild Step 5 holds. 

Step 6. Each Sylow-subgr'oup of F is extra-special and non-abelian and 

IVI = 11¥le, where lFIZI = e2 > 1. 

Proof. By Step 3, every nOrInai abelian subgroup A of G is cyclic. Since 

Opl (G) = G, we conclude F =- Ope G) S; G'S; CeCA) and A is ceIltral in 

F. By Step 5, P S; Cc(Z) S; CeCA). 'rVe now apply Corollary 1.10 with 

, P ~Ce(Z). Because Opl (G) = G, each Sylow-subgroup of F is extra­

special and non-abelian. Since Vr' ,is homogeneous and G I F ~ P is a ]J­

, group, [HB) VII, 9.19] implies that VF is irreducible. Thei'efore, 1111 = 11YIe 

follows from Corollary 2.6. 

Step 7. I PIS; (e 16 /
5

) 12. 

Proof. Since Op(G) = 1 and P S Cc(Z), P acts faithfully and completely 

-, reducibly on FIZ (possibly over different finite fields). Therefore Theorem 

, 3.3 applies and IPI S; (IF / Z 18 /
5 )/2 = (e I6

/
5 )/2. 
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Proof. We pick 1 i= h E (g) with hP = 1. Then there exists Q E Sylq(F) 

such that h ~ Ca( Q), and the hypotheses of LenIma 7.2 are satisfied for 

H = Q(h). Since p > 2, we obtain ICv(G)1 ::; IC v (h)I::;'IVI 1/ 2 • 

Step 9. We may assume that 

(i) IPI >IVI 1
/
2, and 

(ii) e32 2: 21°/1VI 5 e. 

Proof. Since we may assume that P has no regular orbit on V, we have that 

V = UgEP# Cv(g) and 

IVI ~ L ICv(g)l~ (IPI- 1)IVI 1 /2, 
gEP# 

using Step 8. Part (i) follows. By Steps 6, and 7, IVI = IvVle and IPI < 
e16

/
5/2. Thus e32 2: 210lvVl5e, proving (ii). 

Step 10. Coriclusion. 

Proof. Since e
32 ~ 210

. 75e for all integers e 2: 2, it follows from 'Step 9 (ii) 

that IWI < 7. Since char(W) = p is odd, we have that ,lvVI = p is 3 or 5. 

Since !Z! IITVI- 1, Z has order 2 or 4; Tlms F is a 2-groHp and e > 1 must 

be a power of two. It easily follows now from Step 9 (ii) that e and p are as 

in the following table: 

e p = /lVI 

2 3 

4 3 

IVI n:= log2(e2) 

32 2 

34 4 

IGL(n,2)lp 
31 , 

32 

4 5 54 4 51 

8 3 38' 6 34 

Note that IVI = IvVle by Step 6. Also IF/ZI has order e2 = 2H. Since 

P acts faithfully on IF/ZI, we have IPI ::; IGL(n,2)lp. Thus, in all cases, 

IPI ::; IVI1/2. This contradicts Step 9 (i), completing the proof. 0 
I 

7.4 ReITlark. As follows from Example 7.5 (a) below, Th~orem 7.3 does 

not hold for p = 2. If one however requires in addi tion that P does not' 
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involve a copy of D8,thenP has a regular orbit on V. Whereas the proof 

in the quasi-primitive case Hins similarly to the above (and does not rely 

on the assumption about D8 ), in the primitive case Lemnla 4.3 cannot be 

applied any longer. ,It has to be replaced by a result similar to TheOl'~m 4.8. 

For details, we refer to Espuelas' paper [Es 1). 

7.5 ExaITlples. (a) Let VV = Z2 X Z2 be the faithful irreducible S3-module 

over GF(2) and G = S3 WI' Z2. Then V := W a is a faithful irreducible 

GF(2) [G]-module, 02(G) = 1 and D8 ~ Z2 wr Z2 is a Sylow-2-subgroup 

of G. Furthermore, the orbit sizes of G on V are (1, 6, 9) and D8 has no 

regular orbit on V. 

(b) Let V be a 3-dimensiona.l vector space over G F(p). We consider 

r~l o~ all] -h = E GL(3, p). 

Then P = (g) x (h) ~ Zp x Zp. Let v = (x,y,z) E V.,If x = 0, then v is 

"fixed by h E p#; if x i= 0, then gh-Y /
x E p# fixes v. Therefore P does not 

have a regular orbit on V. In particular, the hypothesis that ,9p( G)= 1 is 

necessary in Theorem 7.3. 

In his thesis, W. Carlip [Ca,l, 2] replaced the Sylow subgroup in Theorem 

7.3 by a nilpotent Hall subgroup H. Under the assumption that both IGI 

and p are odd, he proves the existence of a regular H -orbit. 

Weremark that a faithful module action of G on a finite-dimensional F­

vector space V always has a regular orbit, provi4ed that IFI = 00. Namely V 

then cannot be written as the union of a finite numbe~ of proper subspaces, 

and therefore UgEG# Cv(g) < V. 

/, 

" : ~ 



§8 Short Orbits of Lin~ar Groups of Odd Order 

In this section, we are looking in quite the other direction, n~mely we 

try to find shor't orbits =I- {O} for a solvable group G which acts faithfully 

on a finite vector space V. If IGIIVI is odd and V carries a symplectic 

G-invariant bilinear form, T. Berger [Be 1] gave an upper estiinate for such 

an orbit and we present his result as Theorem 8.4: In § 16, we shall use this 

theorem to bound the derived length of a (solvable) group of odd order in 

' .. terms of its different character degrees. 

We start with the following number theoreticallemina. 

. \ 8.1 Len1111a. Let p and T be distinct odd primes and let 11, E N such tlJat . 

'1' In. TllClJ (7' - l);(n + 1) ~ 2(~n + l)/(pn/r + 1). 

Proof. We set a = niT and have to show that (1' - 1 )1"( ar + 1) :::; 

,2(pa7"+1)/(pa+·1). Observe first that (r-l)r(w'+l) = w,3+ 1,2(1-a)-r:::; 

: ar3. Note further 

r-] 

2(par + l)/(p(l + 1) = 2(1- (-p ar)/(1- (_pa)) = 2 2:( _pa)) 
j=O 

\ 

. It thus suffices to show that 

(8.1) 

If l' 2: 7, then 1'3 ~ 2· 3 r - 2 ~ 2p a(7'-2) and (8.1) holds. If r = 5, then 

7,3 = 53 ~ 2. 75 - 2 :::; 2pa(r-2) for p 2: 7, and 

1'3 =53 ~ 2 . 32(5-2) ~ 2pa(r-2) for a 2: 2. 

, Thus (8.1) holds when l' = 5, unless p = 3 and a ~ 1. Check that the lemma 

.' "is also valid then, Let finally r = 3. By (8.1), we may aSSume that3 3 > 2pa. 

, Since p 2: 5, this implies a = 1 and therefore 

(1" - l)r'(ar + 1) = 2·3·4:::; 2(53 + 1)/(5 + 1) :::; 2(pflr + l)/(pa + 1). 0 
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In'the proof of Theorem 8.4 we shall need that a certain group extension 

splits. A criteriOl~ is provided by the following result of Gaschi.itz. 

8.2 Lenlnla. LetA be an abelian normal subgroup of G. Suppose that for 

each prime p andP E Sylp(G), P splits overP n A.· Then G splits over A, 

i.e. there exists H ~ G such that G = AH and A n.H = 1. 

Proof. We proceed by induction on IAI, and choose a prime divisor p of IAI 
and P E Sylp(G). Since P n A is abelian and (IPI, IG: PI) ='1, Gaschiitz's 

Theorem ([Hu, I, 17.4]) asserts that G splits over.P n A, i.e. there exists 

Ii ~ G such that G = (P n A)I{ and (P n A)n I{ = 1. 

Let B E Hallpl(A). Then B ~ ]( and induction yields H ~ ]( snell that 

]( = B Hand B n H = 1. Obviously H then is the required cornpleme!1t for 

A in G. o 

B.3 Len~nla. Let E be an extra-special group of order p2n+l (n EN), and 

V a faithful irreducible F[E]-module for a field F. If gEE \ Z(E) is an 

element of order p, then dilll.F(Cv(g)) = (l/p) . dimF V. 

Proof. Let K be an algebraically closed field extension of F. Then V ®F 

K = vVl EB .. , EB ltfm for irreducible Galois-conjugate K[E]-modules l¥i and 

we may thus assume that F is algebraically closed. Since char (F) =J p must 

hold, it is no loss to assume that F = C. We denote by X the character 

afforded by V. Then x(1) = pn and X vanishes off Z(E) ([Hu, V, 16.14]). 

Therefore X(g) = pn-l . p, where p is the regUlar character of (g), and 

dim:F(Cv(g)) = [X(g») l(g)] = pn-l. 0 

8'.4 Theorelll (Berger). Let Q.be a (solvable) group of odd order, p an 

odd prime and V a symplectic GF(p)[G]-module with respect to the n011-

singular symplectic G-invariant form ( , ). We set dim(V) = 2n. Tllen 

there exists a.n element v E V# sllch tha:t.IG: Cc(u)1 ~ (pH + 1)/2. 
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Proof. Vie proceed by induction on IGI + dim(V), and may clearly ~ssume 

that V is fai thful. 

Step 1. V is irreducible. 

Proof. If not, we choose an irreducible submodule W of V of smallest' 

possible dimension. Set dim(lV) = m. Since ( , ) is G-invariant, the 

subspace {w E W I. (w, Wi) = 0 for all Wi E W} is a su~inodule of W. 

Thus the form ( , ) is either trivial or non-singular on W. In the first case, 

TV is totally isotropic, and [Hu, II, 9.11] implies that m S· dim(V)/2 = n. 

Since ITV#I = pm - 1 is even but IGI is odd, there are at least two different· 

G-orbits on ~V#, and we find a vector w E W# such that 

IG: Cc(w)1 S (pm - 1)/2 S (pn + 1)/2. 

The assertion holds in this case. We may thus ,assume that ( ) ) is non­

singular on W. But then.m = 21 (for some lEN), and since I < n, the· 

inductive hypothesis implies the existence of some w E TV# ~uch that' 

IG: Cc(w)1 S (pi + 1)/2 S (pn + 1)/2. 

ThilJ completes Step 1. 

Step 2. V is quasi-primitive. 

Proof. Suppose not, and choos~ N ~. G such that V N = VI ffi ... ffi Vt wi th 

homogeneous components Vi and t > 1. Set H = N C(Vl)' By Clifford's 

Theorem, VI is an irreducible H -module, and we argue as in the last step 

that the form ( , ) is either trivial or hon-singular on VI. Since G transitively 

permut~s the Vi) the G-invariant form ( , ) ~imultaneously is either trivial 

or non-singular on each Vi. 

Set V/ = {v E V I (v,Vj) = 0 for all Vj E Vj}. For v E V, we consider 

the map Iv E V/ := Hom C~(p)(Vj, GF(p)), defined by 

Clw,p. II SOLVABLG PI~llMUTATION UH.QUI'S il:.! 

Then 

V I--t Iv, v E V, 

induces a G-isomorphism between V /V/ and the dual space V/. Since 

VN is cDrnpletely reducible, there exists an N-module Uj such that VN = 

Vj.L ffi Uj. Thus Uj ~ V/ is homogeneous and consequently Uj = Vrr(j) for 

. a permutation 7r E St. If (., ) is trivial on each Vj, then Vj'~· Vj.L and 

7r(j) f= j for all j = 1, ... , t. Therefore all Vj occur in dual pairs (Vj, Vrr(j)). 

On the other hand, t = IG: HI is odd, a contradiction. ' 

We may thus aSSlllne that ( , ) is non-singular on each Vj . We set 

dim(Vl) = 2m. By induction, there is v E V1# such that IH: C H( v)1 S 
(pm + l)/~. Since Cc(v) = CH(V), we obtain 

I G: C G ( V ) I = I G: H I I H: C H ( V ) I s t(pm 1- 1) /2) 

and we are done provided that t(p71l + 1) S pn + 1. Since t = n/m and p 2: 3, 

it otherwise would follow that 

which contradicts t 2: 3. This'proves Step 3. 

Step 3. F:= F(G) is Hon~abelian. 

Proof. Suppose that F is abelian. By Step 2, VF is homogeneous and 
. . 

Corollary 2.3 yields a labelling of the points of 11 suchthat G S f(p2n) and 

F S fo(p2n). By Lemma 2.2, VF is irreducible: Since FaCts symplectically 

on V, [Hu, II 9.23] implies that IFII pH + 1. 

Let Fl be the Hallsubgroup of fo := fo(p2n) corresponding to the odd 

prime divisors of pl1 + l. Then G n FI = F. We set G 1 = GF1 and claim 

that G1 splits over Fl' To establish the claim, we let S E SyIs( Cd for 
a prime number s . . By Lemma 8.2, it suffices to show that S splits over 

. S n Fl' We may therefore a.ssume that s IIFII, a.nd so s { IT'a I PI f, by the 

definition of Fl. Certainly, Sf 0 splits over r 0, i.e. there exists USsr o' 



such that 5fo = foU and ro n U = 1. Now 5 E Sy18(5ro) and so thei'e 

exists g E ro such that V := U9 S; S. In particular, sro =, roY and 

ra n V = 1. This implies S = raV n S = (ra n5)V = (FI n 5)1/ and 

V n (5 n F I) =' V n F\' ~ V n fo = 1/ Thus Gi splits over FI, and there 

exists HI ~ G I such that,G I = FIHI and FI n HI = 1. 

As HI ~ GdFI ~ G/(G n F l ) = G/F is cyclic, we may write III = (T) 
for a semi-linear transformation, 

Let t = o(a"). Then Tt(x) = a· aCT ... aCTI - I
, 'X

CT1 = (a .'aCT ... adl-I)x for 

'all x E GF(p2n). Consequently, since FI ~ fo and FI =F(Gd, we obtain 
, I-I 

Tt E fo n HI ~ C G1 (Fd n HI = FI n HI = 1. Thus a . aCT ... aCT = 
1 and a is contained 'in 'the kernel 'of the norm ,map fr0111 GF(p2n)# to_ 

GF(p2n/t)#. By Hilbert's Theorem 90 (see [Ja I, Theorem 4.28]), there is 

v E GF(p2n)# = V# with a = v . (v-I)CT. But then T(v) = avCT = v and 

HI ~ CG1(v). Thus 

and Step 3 is complete. 

Step 4. Conclusion. 

Proof. SinceF is non-abelian of odd order, Corollary 1.10 yields an extra:" 

special normal subgroup E of G with exponent 7" and order lEI = r2t+1 (1' 
, , 

an odd prime, t E ~). Set C. = CG(Z(E)); Then IG: CI I l' - I, and C 

fixes the non-singular symplectic form on E := E/Z(E). By Corollary 2.6; 

rt I dimoF(p) V = 2n. Now lei + dim(E) = ICI + 2t < IGI + dim(V) and 

the inductive hypothesis yields an element 1 f- x E E (x E E) such that 

IC: Cc(x)1 ~ (1· t + 1)/2. Set H = Cc(x) and M = (x, Z(E)). We apply 

Lemma 1.5 to M and H/Cn(lYI) (in the role of E and A there). Sirice 

CH(Jv!) = CH(x) it follov.:s that /H:CH(x)l/ 1"; 

Now 1) =f. 1', and we have V = C~f(j:) EB [V,:t]. Let v E Cv(x) and' 

wx - w E [V, x). Then 

(v,wx - w) = (vx-l,w) - (v, w)=:= (v,w) - (v, w) = o. 

This shows that the form ( , ) is still non-singular when restricted to Cv(x). 

As VE is homogeneous, temma 8.3 implies that dimGF(p) Cv(x) = 
(1/1') . dimoF(;) V = 2n/r. We no:w apply induction to the action of 

L := Co(x) on Cv(x),and obtain IL: CL(v)1 ~ (pn/r + 1)/2 for some 

v ECv(x)#. To finish the proof, we gather what we have so far, namely 

'IG: CG(v)1 ~ IG: LI·IL: CL(v)1 

~ IG: CI·IC: HI·IH: CH(x)I·IL: CL(v)1 

~ (1' ~ 1) . (r· t + 1)/2. r. (pn/r + 1)/2 

~' (1' - 1) .' (n + 1) . l' . (p Il! r + 1) /4, 

because rt I n. Now Lemma 8.1 applies, ancllG: Co(v)1 ~ (pH-I-l)/2, which 

was to be shown. o 

8.5 Example. If-JGI is even orp = 2, then the assertion of Theorem 8.4 . 

definitely does not hold. The symplectic group 5p(2n, p) namely contains 

a cyclic irreducible subgroup 5 of order pU + 1, the so-called Singer cycle. 

Since S acts, fixed-point-freely on the natural G F(p)-module V of dimension 

2n, all 5-orbits -=f. {O} have length pn + L , 

We show how to construct the Singer cycle inside Sp(2n, p). 

(1) Let q = pn, Vo == GF(q2), and fi~ some a E GF(q2) \ GF(q). Set 

Let s E fO(q2) denote an element of order q + 1. Then ( , ) is a symplectic 

s-invariant GF(q)-bilinear form on Yo. We claim that ( I ) is non-singular. 

Since (s) acts irred uci bly on Vo, it suffices to show that ( , ') does not vanish 

on Yo. Choose' x E GF(q2) \ GF(q). Then 
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(2) Consider Vo as a G F(p )-vector space V of dimension 2n, and set 

[v, w] = tr GF(q)/GF(p)( v, w), v, tv E'V. 

It is then easy to check tl~at [ , ] is a symplectic s-invariant GF(p)-bilinear 

form on V, which is non-degenerate. Clearly, (s) of order pn + 1 acts irre­

ducibly on V. 

In Huppert's paper [Hu 3], Singer cycles are also constructed in the or­

thogonal and unitary groups. 

8.6 Remark. Odd 'order symplectic groups in odd characteristic also be­

have well with respect to, long orbits, as A. Espuelas [Es 2] showed. His 

results runs as follows. Assume that the hypotheses of Theorem 8.4 hold. 

Then G has at least two regular orbits on V. 

'f 

Chapter III 

MODULE ACTIONS WITH LARGE CENTRALIZERS 

§9 Sylow Centralizers - the Irnprimitive Case 

In the next twosec~ions, we study a situation wh~re a solvable group G' 

acts faithfully and irreducibly 011 a finite vector space V and each v E V is 

centralized by a Sylow p-subgroup (for a fixed prime divisor p of IG/). The 

basic thrust is to show that the examples given in 9.1 and 9.4 are essentially 

the only ones. If V is a quasi-primitive G-module, we show in Section 10 

that G :::; reV) (compare with Example 9.1) or G :::; GL(2, 3) and IVI = 32 • 

, In this section we assume that G is imprimitive andOpl (G) = G. Choose 

e :Sl G maximal such that Ve is not homogeneous and write Ve = V1 EB· .. EB 

Vn for homogeneous components Vi of Ve. The main result (Theorem 9.3) 

employs Gluck's result in Section 5to show that n = 3, 5 or 8, G Ie ~ D
6

, 

DID or Ar(23) and p is 2, 2 or 3 (respectively). Furthermore, e transitively 

permutes the non'-zero vectors of Vi for each i: Then HUPI)ert's results of 

Section 6 apply an~ e/Ce(~) :::; r(Vi ) unless IVii is one of six values. The, 

remainder of this section, somewhat technical, exploits these facts to give' 

detailed information about the normal structure of G. 

9.1 ExalTIple. Let q, p be primes and n an integer such that p 1 qn -1. Let 

V be an n-dimensiorial vector space over GF(q). Suppose that H :Sl reV) = 

r(qn)ancl p IIHI. If v E V,then CH(v) contains a Sylow p-subgroup of Ii 

(and of course'of Opl (H)). Also, Opl (H) acts irreducibly on V" 

Proof. Since r := reV) acts transitively on V#, we have for v E V# that 

/r : C r ( v)/ == qn - L Thus C r ( v) contains a Sylow p-subgro,up of r. Since 

H:S1 r, we have PnH E Syl1!(lI) for all P E Sylp(r). Consequently, qll(v) 

contains a Sylow p-subgroup of H for all 11 E V. It remains to show that 
L := Opl (II) acts irreducibly on V. 



The last paragraph implies that for all v E V, C L( v ) contains a Sylow p­

subgroup of L, and therefore Op(L) acts trivially on V. Thus Op(L) = 1 and 

L has at least two Sylow p-subgroups. For v E V#, Cr( v) ;S f /fo(V) and 

is cyclic. Thus C L( v) contains a unique Sylow p-subgroup. If V = vVl ED lV2 

for L-subrnodules llVj #- 0, we may choose Wi E vVj#, aild Pi E Sylp(L) with 

PI #- P2 ) and Pi' the Sylow p-subgroup of CL(Wi). Then WI + 102 is not 

centralized by a Sylow p-subgroup of L. This contradiction implies that 

L = OP' (H) acts irreducibly on V. 0 

If 7r is a non-empty set ofprirne divisors of 11, each of which is coprime to 

qll -1, then orr' (f(V)) acts irreducibly on V, and each v E V is centralized 

by a Hall 7r-subgroup of orr' (f(V)). This follows immedia~ely from the 

above example. 

9.2 Lenuna. Assumetlwt G acts faithfully on a finite vector space V and 

2 t IG : Cc( v)1 for all v E V. If IGI is even, then char (V)= 2. 

Proof. View V ,as a multiplicative group and form the semi-direct product 

. Ii = V G. Since G acts fai thfully on V" yve may choose v E V and an 

involution t E G such that v t =1= v. Lety = v-Ivt, so thaty E V#. Now 

yl = (vt)-lv'= (V-1vl)-1 = y-I ancl't E Na((y)). The hypotheses imply 

that Nc((y))/Cc(y) hasodd order and t E Cc(y). rr:hus y-I = yt =y. 

Since y #-' 1, char (V) = 2 follows. 0 

9.3 Theore'lTI. Suppose that a solvable group G acts faithfully and irre­

ducibly 011 a fi~ite vector sp:ace V· and each v E -V is centralized by a Sylow 

P'-Sll bgroup of G (pa fixed prime). Furtll erm ore, assume that G ~ G, 

p IIG/G!, tlwt-Vc = VI ffi··· ffi Vn for G-invaria!lt ~ubspacesVi' ancI that 

G /Gprimitively and faithfully permutes·{V1? • • , Vn }· Then 

(a) 

(b) 

(c) 

11 = 3, 5 or 8, and p = 2, 2 or 3 (respectively); 

G jG·.is isomorphic to D 6 , D IO or Af(23
) (respectivel1); and 

C /CC(Vi) acts tran.5itive1yon Vr for each i. 

'-.-il,ll'- .iti lIt! 

Proof. L~t 1 ~ t ~ n and let Ui E Vr. Set u = (Ul, .. ·,Ut,O, ... ,O) E V. 

Then a Sylow p-subgroup P of G centralizes tt, and so P and PG /G stabilizes 

{VI, ... ,Vd. Likewise, every.6 ~ {VI, ... ,V~l} is stabilized by a Sylow p­

subgroup of G/G. Since p IIG/GI, parts (a) and (b) follow frolll Corollary 
5.8. . ' 

For part (c), first assume that 11 = 8, G/G ~ Ar(23) and p = 3. Ob­

serve that a Sylow 3-subgroup of G/Ghas orbits of size 1, 1, 3 and 3 on 

{Vl, ... ,V8} and that stabc/c{V1,V2,V3} ~ Z3·is a Sylow 3-subgroup of 

G/G. Let x, W E V1#, y E vt and z E V3#' Now (x, y, z, 0, ... ) 0) and 

(w,y,z,O, . .. ,0) are centralized by Sylow 3'-subgroups Q1 an'd Q2 of G (re­

spectively). Then Q1G/G= stabc/c{VI , V2 , V3 } = Q2C/G. In particular, 

there exist a, b E Q1 G such that x a = y, ya = Z, za = X, tub = y, yb = z and 

z b = tu. Now a b -1 stabilizes ~ach of VI, V2 and- V3 . Since ouly the trivial 

element of stab c/c{V1 , V2 , V3 } ~ Z3 stabilizes each of VI, V2 and V3 , we 

have that ab- 1 E .C. Now x ab -
1 

= w. Hence G transitively permutes t.he 

non-identity elements of ~1' Part ( c) now follows in the case when n = 8. 

To prove (c) when 11 = 3 or 5, G/G ~ D2n and p = 2, observe that 

stab c /c {VI, V2} ~ Z2. If x, W E V1#, choose y E V2# and consider the 

vectors (x, y, 0, .. , ,0) and (w, y, 0,; .. ,0) in V. Arguments like those above 

show that G is t~ansit~ve on V1#. 0 

Note that if G is chosen maximal with respect to G ~ G and Vc non­

homogeneous, then G/G faithfully and primitively permutes the homoge­

neouscomponen.ts Vi of Va (see Lemma 0.2). 

9.4 EXalTIple. Letp be 2 or 3 and let q1H be a prime power such that 

p f qm,_ 1. If p = 2, let n be 3 or 5 and' H = D2n . If P = 3, let n = 8 

and H = Af(2 3
). Observe that H is a primitive permutation group on n 

letters, and let G = r(qm) wr H .(w.r.t. this permu'tati~n action). Then G 

acts faithfully and irreducibly on a vector space V of dimension rnn over 

GF(q). We let 7r be the set of prime divisors t of IGI which d~ not divide' 

qm ~ 1 or IHI/p, (in particular, 'each t in 'IT must divide 711, or equal p). 
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Vie claim that each v E V is centralized by aHall7f-subgroup of G. Now G 

has a normal subgroup Go ~ r( qnt) X ... X f( q71l), GoH = G and Go nH = l. 

Also V = VI EB .•. EB Vn for irreducible Go-modules Vi that are permuted 

by H. Fix v E V#. Without loss of generality, v = (Vl, ... ,VI,O, ... ,O) for 

non~zero Vi E Vi (i = 1, ... ,l). Let X = {(Wl,""Wr,O, .. ;,O) IWi =1= a}. 

Observe that Go transitively permutes the· elements of X, and X is the 

Go-~rbit of v. In particular, IGo : Cco(v)1 = (q71l _1)/. 

Suppose Z = (Zl,.',.".zn) E V and 6. = {j I Zj =1= a}. Then v and
i 

Z 

are G-conjugate if ~nd only if {I, ... , l} and 6. are H -conjugate. Hence 

IG: Cc(v)1 = (q11l -1)l·IH: stab H( {l, ... ,l) )1. Since n = 3,5 or 8, and H 

is D 6 , DID or Af(23
), p does not divide the index of any set-stabilizer (i.e. 

the converse of Corolla.ry 5.8 holds). Thus IG : Co(v)1 is a 7f'-number. . 

Theorem 9.3 gives us importa.nt information when V is an imprimitive G­

module, OP' (G) = G, and each v E V is c~ntralized by a Sylow p-subgro·up 

of G. We will apply this in Sections 10 and 12, a'nd hence we will need more 

specific information. The re~'nainder of this section will study this situation 

iI~ more detail, although we first givc a gcne.ral proposition. 

9.5 Proposition. Assume that C i S! C and n.i Cj = 1. Let FdCi = 

F(C/Ci), let r be a prime and Ri/Ci E Sy1r(Fi/Ci). Set F = F(C) and let 

R be the Sylow T-subgroup of F. Then 

(a) F = ni Fi; 

(b) R = ni R j ; and 

(c) If l' { ICIFil for all i and Di = CC(Ri/Ci), then R E Sylr(C) and 

ni Di = Cc(R). 

Proof .. (a) Let H = ni Fi. Then HCi ~ Fi for all i and the final term 

I{= of the descending central series of H lies i~ Ci . Thus Hoo ::; ni Ci = 1 

and H is a normal nilpotent subgroup of C, whence H S F. But FCi/Ci is 

a normal nilpotent subgroup of C ICi and thus F ::; Fi for all i. Therefore 

F = H, proving (a). 

Chap. III MODULES WITH LARGE CENTRALIZERS 121 

(b) Now RC~/Ci,~ Or(9ICi) = RdCj for all i and so R ~ niRj. If 

S = nj Rj, then S S! C and SIS n C j == SCi/Cj ::; Ri/Cj. So SIS n C\ is 

an T-group. Since nCj = 1, S::; Or(C) = R, proving (b). 

(c) Assume r: { IC I Pi! for all i. Then,· tiC I Rd for all i, whence by 

(b), C I R = C I(ni Ri) ::; Ili C I Ri is an T'-group. Hence R E Sylr( C), and 

RCi ::; Ri irilplies thatRCi = Ri . . Therefore Cc(R) centralizes RdCj and 

so Cc(R)::; niDi. O? the other hand, [niDi,R]::; [Dj,R]::; Cj for aU j. 

Hence ni Di~ C.c(R), and (c) follows. 0 

9.6 Notation. Throughout the remainder of Section 9, we will be assuming 

. that G satisfies the hypotheses of Theorem 9.3. We will let C:i denote CC(Vi ) 

and let FdCi = F( C ICi). Also, write IVd = q11l for a prime q and an integer 

m .. Also F will denote F(C). Re,call that by Theorem 9.3, p E {2,3} and 

niCi = 1. 

Next is a corollary to Theorem 9.3. 

9.7 Corpllary. 

( a) If p, = 2, th en q = 2. 

(b) If p = 3, then q == 3 or m is odd. 

(c) If q1H =1= 32 or 3\ then Fi/Ci and CI Fi are cyclic groups whose orders 

divide (q11l_ 1) and m (respectively). 

(d) If q11l "I 32 , 34 or 26
, then there is a Zsigmondy prime divisor r of 

qnl _ 1, and if Ri/Cj E Sy1r(CICi), then Fi = CC(Ri/Ci) "2R i . 
\ 

(e) Ifq11l = 26
, and Ri/e i E Syh(CICi ), then C}C(Ri/Ci)IFi lIas OHler 

at most 2 and Pi "2 Ri. 

Proof. Since Ca.,cts transitively on 1~#, we have that IC : Cc ( x)/ = qnt_l 

for e·ach x E Vi#.· The hypothesis on centralizers in'1plies that p f q11l - l. 

Parts (a) and (b) follow immediately. (Of course, (a) is also a consequence 

"of Lenlma 9.2.) 
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We may now assume that qlll =1= 32 or 34 •. Since C lei acts transitively 

on V;.#, we may apply Theorem 6.S.By parts (a) and (b) abov:e, none of 

the exceptional six valu~s of qlll can occur here; We thus conclude that 

CICi ::; f(qm). If, in addition, qlll =1=26
, the Zsigmondy Prime Theorem 6.2 

together with (a) and (b) imply that ~ril ~ 1 has a Zsigmondy prime divisor 

T. By transitivity, T IICIC;I: Parts (c) (exce!)t for the case qm = 26) and 

(d) now follow from Corollary 6.6 aqd Lemma 6.4. 

To complete the proof, we can assume that qm = 26 and must prove (c) 

and (e). By transitivity, 32
• 711CICtI, and by the ~astparagraph, CICi::; 

f(26) =: f. Let Sand T be the unique subgroups of fo := fo(26) of order 

3 and 7 (respectively). Then ST ::; FdCj, T = RdCj and Lemma 6.5 (b) 

yields FdCi'::; CCjc;(ST) ::;Cr(ST) = f o.· Therefore FdCj = CICj n fo 

and parts (c) and (e) follow, since ICr(T)/fol = 2. . 0 

For an abelianp-group P, the rank of Pis Tn when plll=l{xEPlxp =l}l. 

Foran abelian group A, rank (A) = max{rq.nk(P) I P E Sylp(A)}. 

9.B Lelnnl.a. Assume ti1at q1H =1= 32 or 34
. Tflen 

(a) F and CIF are abeJian.ofrank at most n. 

(0) Tile exponent of C / F divides nt. 

(c) II q7H =f. 26, tllere exists a Zsigmo~dy prime divisor r of qm - 1; and 

for evelY SUcll r. and R E Sy1r( C), we have 1 =I=. R ::; F = Cc(R) .. 

(d) II ql11 = 26 and R E Syh( C), then 1 =1= R ::; F ::; Cc(R) and 

Cc(R)! F is a 2-group. 

"Proof. By Proposition 9.5, F = niFj and thus CIF ::; n:~l CIFi . But 

each C I Fi is cyclic and I C I Fd I m, by Corollary 9.7 (c). Hence C IF is 

abelian, rank (CIF) ::; nand exp(CIF) Irn. Now FI(F n Cj) ~ FCdCj ::; 

FdC j·• Since nJF n Cj). = 1, we have F ::; I1~1 Fi/C j and F is abelian of 

rank at most n, by Corollary 9.7 (c). This proves (a) and (b). 

; If q1ll" =f. 26, Corollary 9.7 (cl) yields the existence of a Zsigmondy prime 
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divisor r of qln - 1. If qm = 2 6, we let l' = 7. In all cases, r I"\C led by 

Corollary 9.7, but 7' f ICIFi/. Parts (c) and (el) now follo.w by Corollary 9.7 

( d), (e) and Proposition 9.5. 0 

9.9 Corollary. ·Ass,ume tlwt qm =1= 32 or 3,1. Suppose that Ii ::; F, 11 :S1 G 

and Co(H) i C. Then H is cyclic." 

Proof. Let LIC be the minimal normal subgroup of G IC and note that 

LIC transitively permutes the Vi and hence also theH n C i . Since we have 

Co(H) i C, L ::; C,Co(H). Thus Co(H) permutes the HnCj transitively. 

In particular,H n C 1 ="H nC2 = .,. =H n Cn = 1, with the last equality" 

holding because ni Cj = 1. Then, H ~ HCI/C} ::; FCI/C l ::;F1/C). Now 

FdC] is cyclic by COl;ollary 9.7 (c). ThusH is cyclic. D 

9.10 Letnlna. Assume tilat Opl (G) = G, p f ICI and qln =f. 32 or 34 • Then 

(a) [G, C] = C. 

"(b) III =1= SIF ESyls (CIF) forsomeprimes, tilen CIF = CojF(SIF). 

(c) II 1 =1= SI F E Syls( C I F) and p = 3, then ~ = 2 or rank (SI F) 2=: 7. 

Proof. Recall that we have C < L ::; I( ::; Q" with ILICI = n, LIC a chief 

factor of G, and IG/KI = p. If p = 2, then L = Ie Also LIC transitively 

permutes tl~eVi, and hence the C j imd Fi . 

(a) vVe may assume that there exists A::9 G with A::; C, CIA::; Z(GIA) 

and IC/AI prime. If the nilpotent group LIA is-non-abelian, then ILIAI 

is a prime power and CIA = Z(LIA) = if!(LIA) = (LIAy. Hence LIA is 

extra-special and ILICI is a square, a contradiction as ILICI = 11, E {3, 5,S}, 

Hence LIA is abelian. Since LIC isan irred~cible faithful GIL-module, we 

may write LIA = UIA x CIA with U :51 G and UIA G-isomorphic to LIC 

(note_(IGILI, ILIC!) = 1). If (jGILI, ICIAI) = I, then G has a factor group 

isomorphic to LIU ~ CIA, contradicting the hypothesis that OP'(G) = G. 
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Thus IC/AI IIG/LI· Since p f ICI, in fact IC/AI III{/LI, whence p == 3· 

and II{/LI = 7 = IC/Al=·IL/UI. Then IG/UI = 3.72
, IZ(G/U)I = 7 and 

07(GIU) < GIU, a contradiction to 03'(G) = G. This proves (a). 

(b) Vve now assume that 1 =I- SIF E Syls(C/F). Since G/F is abelian 

(by Lemma 9.8), G/F::; COIF(SIF). Since ,we wish to prove that GIF = 

Co/F(SIF) and since L/C i$ the unique minim~l normal subgroup of GIG, 

we assume that L IF::; CO /F( S I F). ,Now F ::; Pi n S ::; S for each i. 

Since L transitively permutes the Fi and likewise the Fi n's, and sin'ce 

LIF centralizes SIF, we have that.FI'n S = F2 n S = ... ==.=. Fn n S. But 

ni(Fi n S) = (ni Fi) n S ='F. Thus FI n S =\F and consequently SI F = 

S/(PI n S) ~ SFI/FI ::; G/FI . By--Corollary 9.7 (c), SIF must be cyclic 

and so G/Co(S/F) is abelian. Since (GIL)' = I(/L and L::; CG(S/F),'we 

now have th<;tt S / F ::; Z( I{ I F). 

Let PE Sylp( G) and note that IPI = p because p f ICI. We claim that 

P centralizes S / F. First o.bserve that P st abilizes some Vi, wi thou t loss of 

generality P ::; No(VJ). Set H = PC,' hence H/G ~ P has ord<:r p. By the 

last p~ragraph, S / F is H -isomorphic to a subgroup of G / Fl' For the claim, 

it therefore suffices to show that P centralizes C I Fl" We may thus assume 

that Op(JIIGI ) = 1 anci that FdGI = F(HIGI). In particular, H/G I acts 

faithfully, on VI because GIG I does. Also, H/C I transitively pennutes V1#. 

Since I VII =I- 32 nor 34
, it follows from Corollary 9.7 (a), (b) and Theorem 

6.8 that Ii/C} ::; r(qm). In pa.rticular, (H/C1)/F(H/C I ) ~ H/F] is cyclic, 

and P centralizes C / F I , as "desired. We have estabfished our claim that 

P ::; Co(S/ F). 

By the last two paragraphs, S / F is centralized by I( P = G. Let U / F 

be the Hall s'-subgroup of elF. Since e/F is abeliar;. and S/F =I- 1, we 

have that (G, CJ ::; rJ < C, contradicting part (a). This contradiction arises 

because we assumed that C/F> CO/F(S/F). 

(c) Vye now assume that p = 3 and that 1 =I- S / Ii' E, Syls( C / F) for a 

prime s'2:: 3. By (b), we have C/F=CO/F(S/F), i.e. G/C ads faithfully 
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on the abelian group S/ F. Since L/C is a 2-group and s =I=- 2', Lie a~ts 
faithfully on fh(S/F) = {g E S/F I gS = I}. In fact we may choose 

y ::; X ::; f'll(S/ F) such that X/Y is a chief factor of G and L/C a'cts 

faithfully on XIY~ Since L/C is the only minimal subgroup of GIG, XIY 

~s a faithful GIC':'module and Cx/y(LIC) = O. But I(/Cis a FroLenius 

group of order 2
3 

·7 and so dim(XIY) 2:: 7 by Lemma 0.34. Consequently, 

If'll (S/F)I ~ s7 and rank (SIF) ~ 7. 0 

9.11 Corollary. Assume that p = 2,0 2' (G) = G 'and 2 f ICI. If q171 =I- 26 , 

let 7' be a Zsigmondy prime divisor of q171 - 1. If qln = 26 , tilen let r = 7. If 

R is tile SylO1~ 7'-subg~'otlp of F and C! > F, then rank (R) ~ n: 

Proof. Now 1 =l-CIF has odd order and exp(GIF)11n, by Lemma 9.8 (b). 

So m is divisible by an odd prime. As q171 = 2171 (sec Le~11ma 9.2) 'and 

qm -f 22 nor 24
,7' is not 3 or 5. Consequently r f IGIGI, beca.use GIC ~ D6 

or DID. Since IC / FI is odd, Lemma 9.8 (c), (d) implies tha.t R E Sylr(G) 
and Cc(R) = F. 

Now C < L < G with IGILI = 2 and ILICI = 3 or 5. Since C > F, it 

follows from Lemma 9.10 (b) that LI F is n9n-abelian. Since G I P acts faith­

fully on R, so niust LI F. Now r fiLl FI and thus LI F acts faithfully a.nd 

completely reducibly on 0,1 (R) == {x E R I· x r = I}. Thus there exists an 

irr~ducible LIF-module X::; f'll(R) such that LICt(X) is non-abelia.n. In 

particular, F ::; C L(X) S C, and L/C dX) has a normal a.belian subgroup 

CICL( .. J{) of prime index n E {3,5}. Cons~quently, dim(X) ~ n because 

,7' f ILIC L(X)I and every absolutely irreducible faithful LIC L(X)-module 

in characteristic r has degree n. Thus If'l] (R)I ~ rn and n 2:: rank (R). By i 

Lemma 9.8 (a), rank(R) = n. 0 

9.12 Lelllilla. Suppose that p = 3, that E :::::J G and E is all abelians­

group for a prime s, sf ILl Fl· Assume that CG(E) ::; C. Also assume that 
q Tn ::J 32 or 34 . TiJen rank (E) 2: 7. ' 
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Proof .. Set B = Cc(E). The hypotheses and Lemma 9.S imply that E :; 

F ~ B ~ C. Note that ](IC' is a Frobenius group of order 23 ·7 with 

Frobenius kernel LIC of order 23
• 

We claim there exist subgroups B -< J <J H :; G such that JIB il:; 

abelian,HIB is non-abelian, IHIJI = 7 and s t IJIBI. If LIB is abelian, we 
I _ 

let J = Land H= 1(, Since s fiLl FI and 1(IC is nOl~-abelian, the claim 

holds in this case.vVe thus assume that LIB is non-abelian. Set J = C 

and HIC E Syh(GIC). Then s t IJIBI. We need just show that HIB is 

non-abelian. If not, then H :; Cc(CIB). Since LIC is the unique minimal 

normal subgroup of GIG, we have that Cc(GIB) contains Land Llf = IC 

Because B < L'B :; G and GIB ::; Z(I(IB), we may choose B :; D < G 

such that L! D is non-abelian and G I D is cyclic. Since L I G is a chief 

factor-of 1(, it follows thatG I D= Z(LI D) = Z(I( I D). Furthermore, every 

normal abelian subgroup of KID must be contained in GID = Z(I(/D). By 

Corollai-y 1.4, IL: CI = IF(I(/D): Z(I(/D)I is a square. Since IL: GI = 23
, 

this contradiction establishes the claim. 

Now let 1 = Eo < EI < .. , < E t = E with each Ei+t! Ei an irreducible 

H/B-module: Since 1 'I (HIB)' ::; C/B and s f I(If/B)'I, it follows that 

for some j, (H/B), I=- ClI/B(Ej+I/Ej).Thus T := HICH(Ej+-I/Ej ) is 

uOll-abelian .. Now T has a.n abelian normal subgroup of index 7. Thus 

7 I dim( Ej+l! E j ) and rank (E) 2:: 7. 0 

§10 Sylow Centralizers ~ the Prilllitive Case 

We continue to study the situation where V is an irreducible G-module 

and every element is centralized by a Sylow p-subgroup of G, but our em~ 

phasis now will be on when V is quasi-primitive. Actually, we just assume 

that V is pseuclo-primi ti ve. Recall that V is called pseudo-primi ti ve if V N )s 

,homogeneous fOi' all characteristic subgroups -N ~f G. So the rcsult$ of the 

last section still come into play, specifically in Lemma 10.1. If V is pseudo-
! ' ' 

primiliveand -Cc(v) contains n. Sylow p-suhgmup of G (for a11 v E V and a -
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fixed prime divisor p of G), then G ~ r(V) or IVI E {32 , 26} (see Theorem 

10.5). 

10.1 Lenuua. Suppose that a solvable group G '11 acts irreducibly and 

faitllfully on a Enite vector space V such that each v E V is centralized 

by a Sylow p-subgroup of G. Assume that Opl (G) = G and V is pseudo­

primitive. Tllen either 

(i) Every normal abelian subgroup of G is cyclic; or 

(ii) IVI = 26
, P. = 2 = IG : F( G)I, F( G) is an extra-special 3-grollp of 

expo-llcllt 3 alld order 33
, and Z(F( G)) = Z( G). 

Proof. .The hypotheses imply that Op(G) ~ Cc(V) = I, p{ IF(G)\, GIG' 

is a p-group and thus F( G) ~ G'. Every characteristic abelian subgroup 

of G is cyclic, central. in G', and thus containeclin the center Z of F( G). 

We set F = F(G). If Z = F, conclusion (i) holds. We may assume via 

Coronary 1.4 that F = E .'~ wher~ E is a direct product·of extra-special 

groups, Z n E = Z(E), and IFIZI= e2 for an integer e > l. (Note that Z 

has a different meaning than in Cor. 1.4 a~d that we do not assum~ that E 

is normal iil G.) 

We can assume that there exists a non-cyclic abelian normal subgroup 

A :::] G. Or. course, A ::; F, and VA is not ho~nogeneous. By Proposition 

.0. 2, there exi~ts a110rmal subgroup A ~ G :::] G such that VN is not ho-' 

m()geneous for all normal subgroups N of G with A ::; N ::; G. Moreover, 

Vc = U1Ef> ... EEl Uri for G-inva~'iant Uj that GIG faithfully and primitively 

pennutes. In particular, FiG by the hypotheses of the theorem. By 

Theorem 9.3, G /C ~ D 6 ,. DID or Af(23
) =: J, n = 3, 5, Sand p = 2, 

2 or 3, respectively. Thus G / G has a unique minimal normal subgroup 

LIG and a unique maximal norm111 subgroup }(IG; of course 1( = L when 

p = 2. Since F i C, we have that FC = Land F nG = F( G). Conse­

quently, FIF(C) ~ LIG is a chid factor of G with order n = 3, 5 or 23 -

(respectively). 



128 PRIr\,JITIV1'; U WITH LARGE CENTRALIZERS Sec. 10 

If C i CC(Ui ) and Fd Ci = F( 9/Ci), then ni Cj = 1 and ni Fi =-
F(C), by Proposition 9.5. Since F/F(C) ~ L/e as G-modules, 'F/F(C) 

transitively permutes the, Gi ancllikewise the Fi. But F( G) ~ Fi ~ G and 

F /F( G) centralizes G /F( G). Thus FI = ... = Fn ~ F( G) and G /F( G) = 
G/Fl . 

We claim that F( C) is abelian, or p = 3 and IUd = 32
• We may assume 

by Lemma 9.8 (a) and Corollary 9.7 (a) that IUil = 34 an~ p = 3. It 

follows from Theorem 9.3 (c) that C / C1 transitively permutes the elements 

of ut. Consequeiltly, Theorem 6.8 implies that either C / Cl ~ r(34
), or 

G /F( G) = G / Fl has or~er 5, 10 or 20. In the first case, IG / G Ii is divisible 

by the Zsigmoncly prime divisor 5 of 34 
- 1, and by Corollary 6.6, Fdel 

and hence F( G.) are abelian. In the second case, L / F ~ G /F( C) has a 
normal Sylow 5-subgroup T / F of circler 5. Now G / L is non-abelian of order 

3·7, and Aut (T/ F) :::; Z4, contradicting 0 3' (G)= G. This establishes the 

claim. 

Recall that F/F(C).~ L/C is a chief factor of order n = 3, 5 or 23. 

Also F is non-abelian and Z is cyclic. ' By the last paragraph, F( C) is 

, abelian or p = 3 and n = 23. ' Thus Z:::; F( C). Since A .s; F( C) :::; ,C, 

" docs not. restrict homogeneously to FCC) (see second paragraph) ancl 

the hypotheses imply that F( C) is not characteristic in G. Sirice F /F( C) 

is irrechlcible, it follows that there exists 1\1 ::9 G with Z :::; 1\1':::; F( C) 

such that F/1\1 = Xl EB X 2 for irreducible G-modul.es Xi of order n. Also 

GICc(X2 ) ~ G/C C (X1 ) = G/Cc(L/C) = G/L. Since I(/L = (G/L)', it 

follows that G/Cc(F/M);S GIL x G/L and IG'/Cc l(F/1\1)IIII</LI 2
• 

Since F = E Z for a direct produc~ of extra-special gro~ps E and Z -= 
Z(F), an abelian subgroup B of F with Z :::; B must satisfy IB /ZI :::; IFIBI 
(see [Hu, III, 13.7]). Since Z :::; 1\11 ~ F(C) :::; F andIF(C)/1\11 = IF/F(C)I, 

it. follows that 1\11 =, Z whenever F( C) is abelian. By the next. to t.he last 

paragraph, 1\1 = Z, unless possibly p '~ 3 and IUd =3 2
• For the moment, 

assume that M = Z. By the last paragraph, IG'/CG'(F/Z)II II(ILI 2
• By 

Theorem' 1.12, G/F acts faithfully ;'nd completely reducibly on F/fp(G). 
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Then G' j F acts faithfully on F/(Z<I>(G)) and on F/Z. Thus IG' / FllilI(j LI2 
except possibly when M > Z, p = 3 -and IUd = 32 • In this exceptional case 

, . .: ' ) 

n = 8 and lVI = IUds = 316
. Now e = IF : Z1 1

/
2 > IF :1I1P/2 = 8 

. and e /, clim(V) I dim(Vo) for. an irreducible Z-submodule Vo of V. Since 

IVI = 316
, we have thate = 16, IVol = 3, IlvIlil = 4 and IZI = 2. Now Z = 

Z(G):::; ~(G) and !/if!(G) is a completely reducible faithful G/F-module 

whose irreducible constituents are G-isomorphicto Xl, X 2 or a submodule 

Y of 1\1/Z. Note tha,t G/Cc(Y) has order 1 or 3 because Opl ((7) = C" 

Recalling that 11(/ LI is 1 or 7 for p = 2 or 3 (respectively), we summarize: 

I G' : FI = 1 when p = 2; 

IG': FII 72 when p = 3. 

Also IF/ZI = 11,2, exce'pt possibly when IF/ZI = 4· 11,2, P = 3, IUil = 32 and 

Z = Z( G) has order 2. 

First suppose \t1la~ p = 3, so that n = 8. We set IUd = q1H for a prime 

q and an integer m. Since Vz is homogeneous and Z .s; C, ~e have that 

IZII qm -1. Now ISyl3(G)1 = IG' : CCI(P)I for P E Syl3(G),'-hecause GIG' 
is a 3-group. Thus 

ISy13(G)I:::; 72 .82 ',IZI:::; 72 .26
• (q1H -1), or 

IS y 1a ( G) I :::; 72 
. 82 

• 4 = 72 
. 2 s an d q 1H = 32 • 

(10.1) 

Now P permutes the Ui in orbit,s of size 1, 1, 3 and 3. Next w~ let Xo =' 

{( U 1, ... , Us) lUi E Uj , exactly six Ui are non-zero}. Then P centraliz~s at 

most (q 1H - 1) 2 elements of X o' The hypotheses imply that each x E X 0 is", 

centralizecl by some Sylow 3-subgroup. Hence ' 

ISy13(G)I· (qm _1)2 ~ IXol ~ (n . (qm - 1)6. 

'Combining (10.1) and (10.2), we get 

72 . 26 ~ 7 . 22 . (qm _ 1)3, or 

72 
. 2 8 ~. 7 . 22 

. (q m - 1) 4 = 7 .' 2 14 when q m = 32 . 

(10.2) 

I· 
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The second equation is nonsense and the first only holds when qm ::; 5. 

Note that 2 divides IF / Z I and hence IZ I. Thus qm is 3 or 5, a~d Z ~ Z( G) 

because 03'(G).~ G. Since m = I, we h~ve C ='Fl and L/F ~ C/F(C) = 

C / Fl = -1 (see the third paragraph of the proof). Thus G / L =' G / F is 

non-abelian of order 3·7 and F/Z = Xl EB X 2 with each Xi a faithful G / F­

module of order 23. Then ICF/Z(P)I = 22. Since Z ::; Z(G), ISyl3(G)1 ::; 

II(/FI·I(F/Z) : CF/z(P)1 = 7.24
, ,This contradicts (10.2). Hence p =f. 3. 

Now p = 2 and G/G' = G/F is a 2-group.:Also G/C:::==: D2n with n = 3 

or 5 and P E Syb( G) fixes exactly one Ui and permutes the others in pairs. 

Now F(C) is abelian with index n in F,'IF/ZI = n 2 and n IIZI. By Lemma 

9.2, IUil ="2m f~.r an integer m. 

vVe claim that L = F. Assume not, so.that L/F:::==: C/F(C) = C/F~ 

is a non-trivial ~-group. Since C /C i transitively permutes the elements of 

ut, Theorem 6.8 implies that C /Ci ::; f(2m). Since If(2m)1 = m(2m - 1) 

and 2 IIC / F11, rn is even. Now a Sylow ~-subgr~up Q of C centralizes at 

most 2 m
/
2 elements of Ui for eachi: Thus Q centralizes at most (2 m/ 2 -

l)n elements of X := {(UI,'" ,un) I Uj E Ui , all Hi non-zero}. Since 

I. each elemel1,.t of X is centralized by a Sylow 2-subgroup of C, we have that 

ISyb(C)I(2 m/ 2 _l)n 2: IXI = (2m -- 1»>. On the other hand, ISyh(C7)I'::; 

IF(C)I = n"IZI ::; n· (2m - ,I), with the last inequality bec'ause, IZI I IUd -,-1. 

Thus n ~ (2m/2 + It/(2m -: 1). Since n' = 3 or 5, this is a contradiction. 

Therefore, L = F has il~dex 2 in G and C = F( C). As IFI is odd, we also, 

have IPI = 2. 

Now P inverts the module FjZ of ordern2. Since the Sylow n-'subgroup 

N of F is non-abelian, p'does not induce a fixed-point-'free automorphism 

of N. Hence P centralizes the cyclic group ZeN). Write Z = ZeN) x S for 

a cyclic {2, n }'-group S. Now F = N x Sand Cs(P) = 1, as 0 2' (G) = G. 

vVithout loss of generality, P stabilizes U1 • Applying,Lemma 0.34 to the 

,action ofSP on UI ; we conclude that CUl (P)~ 2m/ 2 or S = 1. For the 

set X := J(UI, ... ,un) I 'tli E Ui, all Uj non-zero}, we have that ICx(P)1 ::; 
(2m - 1)(1l+1)/2, ~\'nd even ICx(P)1 ::; (2 111

/
2 ~ 1)(21ll - 1)(11-1)/2 provided 

that S =f. 1. Now ISyl2(G)1 ::; IF: CF(P)I = n21SI::; n 2 1ZII'n ::; n,-(2 Tn 
- 1). 

Since each element of X is centralized by a Sylow 2-subgroup of 'G, it holds 

that 

n(21ll - 1)(27H - 1)(n+l)/2 ~ IXI = (2m -It, and 

n(27H - 1)(2m - 1)(1l -1)/2(27n /? - 1) ~ IXI = (2m - It if S i- 1. 

If n = 5, the first inequality implies that 2m 
::; 6, a contradiction because 

nl IZI.I 2m 
- 1. Thus n = 3. Should S i- 1, then the second inequali,ty 

implies that 2m = 4, whence IZI = 3 and S = 1, a contradiction. Thus 

S = 1, i.e. F = N. Now P centralizes at most 27n_ 1 elements of Y := 

{(Ul,'tl2,U3) lUi E Ui, exactly one Ui is zero}. 'Since ISyh(G)1 ::= 32, we 

have that 32 
. (2m - 1) 2: IYI = 3 . (2l1l - 1) 2, a.nd therefore 2111 = 4: This 

means that IVI = 26
, IZI = 3 and F is extra-special of order 33. That F 

has exponent 3 follows from Theorem 1.2. o 

, 10.2 Lelnnla. Suppose that V is a finite faithful irreducible G-module, 

that 0 1/ (G) = G =f. 1 and Ope G) is nilpotent (p a prime). Furthermore 

assume that ]J fiG: Ca(v)1 for all v E V and tllat V is pseudo-primitive. 

Then one of the following assertions occurs: 

(i) 01'( G) is a cyclic pi_group; 

(ii) IVI = 32, p = 3 = IG: OJl(G)1 and G:::==: SL(2,3); 

(iii) IVI = 26
, 01'( G) is extl'll-spcciaJ' of ,ordcr 33 n.ud eXpOl1Cllt 3, ]J = 

2 = IG: OP(G)I and Z(OP(G)) = Z(G). 

Proof. By Lemma 10), we may assume that every normal abelian sub­

group cif G is cyclic. Let F= F( G). SinceOp(G)::; P for all P E Sylp( G), 

the hypotheses imply that Op( G) ::; Ca(V) = 1. Thus p flFI, F = OP( G) 

and F $ G'. If A is a normal abelian subgroup of G, then A is cyclic and thus 

central in G' ~ F. Let Z = Z(F). By Corollary LID, FjZ is a completely 

reducible G-module aIicllFjZI, = e2 for an il;teger e. (Note that Z luis a jif­

fcrent mcaning.than in Cor. 1.10.) By Corollary 2.6, dim(V) = t·c·dim(TV) 
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then y = (Vl' V2, 0) E Y. We choose P2 E Syl (G) with P 2 = CG(y). Since 

P2 fixes V3 , the last paragraph implies that P2 :::; CG(V3 ) and cbnseqtielltly 

P2 :::; C G ( v). Pi=1rt (~) foll~ws. 

vVe finally prove.( c) by induction 'on IGo/GI. For G :::; H char Go, we 

. have that VII is pseudo-primitive and irreducible,aI~d thn,t each v E V is 

centralized by a Sylow 2-subgroup of H. We may assume that Go/G is a 

q-group for a primeq. By Lemma 10.2, we may also assume thatq f=. 2. 

Now let lvi/F E. Sylq(Go/F), so that IGo/AII = 2 and M char Go. Either 

q = 3 aud lv[ is a 3-group, or q> 3 and M / F centralizes both F / Z' and Z. 

In all cases, 111 is nilpotent. Apply Lemma 10.2 for a contradidion. 0 

. The hypothesis that OP' (G) = G in the next theorem is more for conve­

nience. ·'!.fie remove it in Corollary 10.5 (but we must also allow the conclu­

sion G = GL(2, 3) when IVI = 32
). 

10.4 Theorenl. Let G be a solvable group acting completely reducibly and 

faithfully on a finite vector space V such that p t IG: CG(v)1 for all v E V 

(p a fixe~I prime). Assume that OP'( G) = G f=. 1 and that V is pseudo­

primitive. Then V is an irreducible G-module aiJ~ one of the following 

occurs: 

(i) Ope G) is a 'cyclic p' -grou'p a.nd G ::; reV); 

.(ii) G ~ 5L(2, 3), p = 3 and IVI = 32
; or 

(iii) OP( G) is extra-special of order 33 and exponent 3, p =2 = 
IG: OpeG)I, Z(G) = Z(Ol'(G)) and IVI = 26. 

Proof. vVe argue by induction on IGIIVI. If V is not irreducible, we may 

write V = ... Y EB Y for faithful G-m(jdul~s X and Y, because V is homoge­

neous. Applying the' inductive hypothesis, we may assume that G and X 

satisfy the conclusion of the theorem. If OP(G) is cyclic or G ~ 5L(2,3), 

then Ce(x). E Sylp(G) for all x E X#. If OII(G) is extra-special of order 

33
, ~e Illay choose x E X such tha.t Ce( x) ESylp( G) (see Example 10.3). 

Choose 11 E Y such that C G (:1;) does not centra.1izc· y . . Then the vedor 
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(x, y) EV is not centralized by a Sylow p-subgroup of G, a contradiction .. 

Hence V is an irreducible G-module. 

We let I( = OP(G), F = F(G) and Z = Z(F). Since OP' (G) = G, I( ::; . 

G'. If 5 ~ Gand PE Sylp(G), then P n 5 E Sylp(5): Thus p t 15: Cs(v)I,: 
for all v E V. If 5 is also characteristic in G, then OP' (5) andY satisfy the 

hypotheses of the theorem or p t 151. Since G is faithful on V; Ope G) = 1 . 

and]J t IFI· 1'h\1s F ::; I( ::; G'. 

Stepl. V is an irreducible J(-module. 

Proof: Let Va bea.n irreducible J(-submodule of V, and let v E Vo#. Now,' 

v is centralized by a Sylow p-subgrol.lp Po of G. Then Va is invariant l1nder 

I( Po = G, <'~lld Va = V follows. 

Step 2: We may assume that 

(a) F < 1(; 

(b) Z< F; and 

( c) Every normal abelian subgroup of G is cyclic and contained in Z 

and Z = Zein. 

Proof. (a) 'if F = I(, it .follows from Lemma 10.2 that either I( is a cyclic 

p'-group or conclusion (ii) or (iii) of the theorem hold. As VK is irreducible, 

G ~ reV) ill the first case by Theorem 2.1. 

(b) If F = Z, then F is cyclic and therefore I( :::; G' :::; CG(F) = F. 

Thus F = I(, contradicting (a). 

(c) By Lemma 10.1, we may aSStlIne that· each normal abelian subgroup' 

B of G is cyclic, and thus central in G' ~ F. Hence B ~ Z ~ Z(G'). Since 

F :::; I( ~ G' and Z = Z(F), part (c) follows. 



" 
'for an irreducible Z-subrnodule VV of Valid an integer t. Since Vz is homo-

;geneous,IZllllVI- l. If e = 1, then F = OP(G) is cyclic and conclusion, 

~(i) holds. We thus assume that e ~ 2,'i.e. F> Z. 

Let v E V# and observe that Cz(v) = 1 and ZCp(v) :::;! F. Since v 

is centralized by a Sylow p-subgroup Po of G, even ZCp(v) :::;! FPo = G. 

Now ZCF(v) is an abelian normal s'ubgroup afG. Henc~ ZCp(v) S;. Z 

,and CF(v) = 1. Consequently, F' acts fixed-point-freely on V. Since F is 

,nilpotent and non-abelian, it follows that F= Q x S with a cyclic group 

5 of odd orde~ pnd Q a quaternion group (see [Hu, V,8.7]). By the first 

. paragraph, Q /Z( Q) is elementary abelian and thus Q ~ Q8 (cf. Proposition 

l.1). Since Opl(G) = G, it follows that for P E Sylp(G), Cs(P) = 1, 

'CQ(P) = Z(Q) and p == 3 . .rn,particul~r, then ISyh(G)1 = IF : Cp(P)1 = 
IF-: Z(Q)I :== 4 . 151. For v E V# we h~ave seen that CF(v)' = 1 and 

,thus CG(v) E Sy13(Gj. Hence IV#I = ISyh(G)1 'I(Cv(P))#1 with P E 

Syh(G). Letting IVI = qn and ICv(P)1 = qm for a prime q, we have 

(qfl_ 1)/(qnl - 1) = 4· 151; in pal·ticular min. 

We! claim tl1at IG/FI = 3. Assume not. Because G/Co(Q/Z(Q)) = 3 

and G / F is a 3-group, we may choose J :::;! G such that J has a cyclic normal 

,',sllbgrollp Jo of index 3,10 S; S, alid 1 is a Frobenills group, Every v E Vis 

:ccntrnli2ed by n. Sylow 3-subgroup ~)f J becf,tuse J .:s! G. Let PI E Syh( J). 

'Then ICV(P1)1 = IV1 1
/
3 (see Lemma 0.34). Hence 1101 = ISyb(1)1 ~'IVI2/3 

'and IZI ~ IVI 2/3. This contradicts Corollary 2.6 which implies tha~ IZI ::; 

·,IVI 1
/

2
. Hence IG/FI = 3. 

,': If5 =1= 1, then SP is a Frobenius grollp and qnl = ICv(P)1 = IV1 1
/

3
, by 

;Lemma 0.34. Thus ISyh(G)1 = 41S1 = (q3m _1)/(qm - 1) = 1 + qn1 + q2m, 

;a contradiction because the right hand side i~ odd. Thus 5 = 1. Now 

., ~4 = 1 + qn1 +!'.' + qll-m. Hence IVI = qH = 32 and Q8 S; G S; GL(2,3). 

; Since 0 3' (G) = G, it follows that G ~ SL(2, 3): ,0 

10.3 Exa~llple. Suppose tllat F = F( G) is extra-special ,of order 33 and 

exponent 3,;that IG: FI = 2, Z(G) = Z(F) and 02'(G) = G. Then G has 

C';i'l)' iiI 

a unique faithful irreducible module V over G F(2). Furthermore 

(a) IVI = 26 and 21ICc(v)lfor all v EV. 

(b) There exists Y E V with ICG(y)1 = 2~ 
(c) Suppose that G char Go S; GL(V) with Go solvable and V a pseudo­

primitive Go-module. Assume that each v E V is centralized by a 

Sylow 2-subgroup of Go. Then Go = G. 

Proof. Observe that in characteristic 2, G has two absolutely irreducible 

and faithful representations, both of degree 3 (see [Hu, V, 17.13)). Hence 

over GF(2), Ghas' either exactly one faithful irreducible representation 

necessarily of degree 6, or exactly two faithful irreducible representations 

both of degree 3. If V is a faithful irreducible GF(2)[Gl-module, then 

IZ( G)I I IVI- 1. Thus IVI = 26 and V is unique. 1'he same, argument 

shows that VF is irreducil~le. 

Since G/ F inverts F/Z(G), we may choose G :::;! G with C elementary 

abelian of order 32 . Then V C' is not homogeneous. But Vp is irreducible 

and so Vc = VI EB V2 EB V3 for homogeneous components Vi of Vc that are 

tra.nsitively and faithfully p~rmllted by G/G ~ S3. For i 1= j, Cc(Vi ) n 
Cc(Vj) = 1. Let Y = {(VI, V2, V3) I l!i E Vi, exactly two 'Vi non-zero}. 

Then Cc(y) = 1 and consequently CF(Y) = 1 for all y E Y. In particular, 

CG(y) has order 1 or 2, and y E Y is centralized by at most one Sylow 

2-subgroup of G. If P E Syh(G), then P fixes one Vi and interchanges 

the other two. ~hus P centralizes 3 elements of Y. Since, IYI = 33 and 

ISyb(G)1 = IF : Z(G)I = 32
, we have ICG(y)1 = 2 for all If E Y .. This 

establishes' assertion (b). 

Say P fixes Vl, so that stab G(VI ) = GP. Now G/CC(Yl) ~ Z(G), 

and since [Z(G),P] = 1, it follows that GP/Ccp(V]:) has a nonnal Sylow 

2-subgroup. AS'YI is an irreducible GF(2)[GP]-module, P S; CG(Vd· 

We next establish assertion (a), and let v = (VI, V2, V3) E V. If two Vi 

are zero, say VI =1= 0, we then choose PI E Sy12( G) that fixes VI. By the last 

paragraph, PI :S Co(VJ), and so Pl.:::: CG(v): Ifho~ever all Vi are non-zero, 
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Step 3. 

(a.) F/Z =HI/Zx ... ·xHm/ZforchieffactorsHi/ZofG/Zwithrn ~ 1. 

(b) Z = Z(Hi) and Hi = ZFj for an extra-special group Fi :s! G. 

(c) IHi: ZI = If for a prime power Ii = q?i > 1. 

(d) If ltV is an irredu~ible Z-submodule of V, then dim(V) = te.dim(W) 

for an integer t and e = II ... 1m > 1. 

(e) Let Oi = Cc(HdZ). If Ci ~ H ~ Cc(Z), then HICi is isomorphic 

to a subgroup of Sp (2ni' qi). 

Proof. By Step 2, eve~y normal abelian subgroup of G is cyclic and central 

in F. This st.ep thus is a consequence of Corollary 1:10 and Corollary 2.6. 

(Note again that Z has a different meaning than in Cor. 1.10). 

Step 4. If N is characteristic in G and p IINI, then N = G. In particular, 

p 1 11(1, }( = G' and GII( is elementary abelian. Also by Step 2 (a), 

Op(GIF) = 1. 

Proof. Assume that N is a proper characteristic subgrotip of G and p IINI. 

Without loss of generality, N = OP' (N). Let L = OpeN). By the inductive 

llypothe:->iH) V is an irrcdncihlc N -modn1c. By t.he same argnlTlcnt uS in Step 

1 V is an irreducible L-module. Suppose that L is cyclic. Then L S; Z( G') , 
and L S Z. But by Step 3 (d), Vz is not irreducible, and so L is pot cyclic. 

Applying the inductive hypothesis to N, we may conclude either 

or 

IVI = 32
, p = 3 andN ~5L(2, 3), 

IV I = 26
, P = 2 and N has the structure described in 

conclusion (iii). 

In the first case, N :s! G ~ GL(2,3). 'Since N < G, we have IGINI = 2, 

contradicting OP' (G) = G. In the second case, N = G by Example' 10.3. 

St.ep 5·. F / Z 'is a faithful G I F-moclule, i.c. ni C i = F .. 
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Proof. If n~t, then D := ni C j > F. By Corollary 1.10,F/Z is a faithful.:' , 

G'IF-lnodule and hen~e G'IF n DIF = 1. Since G/G' is \a p-group, DIF' .. 

is a non-trivial p-group. Then Op(G/F) i= 1, contradicting Step 4. . 

Step 6. Let HdZ. be a chief factor of G as i~ Step 3 with IHdZI = ff and_ 

Ci = yc(HdZ). Then 

(a) C i < G. 

(b) }( S C i if and o·nly if fi= 2. Also p = 3 in this case. 

(c) At most one Ii equals 2. 

Proof. If C i = G, then H d Z is a central chief factor of G I Z. In this casej 

IHdZI isprime, a contradiction. Thus Ci < G, proving (a). 

'. \ 

If Ii = 2, then G/Ci S 53' As p t IFland OP'(G) = G, we have'. 

IG/Gil = 3 = p and I( ~ Ci. To prove (b) and (c), we may assume for some,. 

. E {l· m} that ]( < C' if and only if i S j. Let II = III'" Hj and J , ... , - , . 

B = C K( II) :s! G. Now Ii / Z is central in I( and thus 1(/ B is isomorphic to: 

a subgroup of Aut(I-!) that ads trivially on both II/Z and Z. By Lemma 

1.5, II{/ BI s IR/ZI. But B n H = Z(H) = Z and hence I( = BH .. 

For v E V#, v is centralized by a Sylow p-subgrollp P 1 of G and thus: 

i. Cf[(v) -::1HBP1 = I(P1 = G. Sii1c~ Cu(v) n Z. =Cz(v) == 1 and H/Z .. 

is abelian, Z .CH(v) is an abelian-~ormal subgroup of G and by Step 2 (c)". 

contained in Z. HC{lce H actsfixed-point-freely on V. By [Hu, V, 8.7], a 
Sylow-subgroup of H is cyclic or isomorphic to Q8. Thus II-! /ZI = 22

, j = 1 

and II = 2. This step is complete. 

Step 7. 

(~).If Ii =2, t.hen p = 3. 

(b); Ii is not; 22
, 24 or 3. 

(c) If Ii = 23
, then p= 3 and,P i CG(Z) (P E Sy13(G)). 

(el) If Ii ~ 25
, then p = 5 anclII(II( n Cd S; 25 .35

. 

(e) If Ji = 32
.' !'.itenp = 2 and I[(II'} n Cd ::; 5, or]J = 5 an(l ]{j [( n Ci ' 

is extra--spec.ia.l of order 25 ~ 



(f) IfJi = 33
, then p = 2 andIK/]( n Cd'~ 32 .13. 

(g) 'If Ii = qi, then p~' 3. 

Proof. Part (a) is immediate 'from S~ep 6 a~ld is restated here for conve­

nience. Assume that Ii =/= 2. By Step 6, C j = Ca(]IdZ) does not contain 

I{. It thus follows from Step 4 that I(CdCi = (G/Ci)' isa non-trivial pl_ 

group and G /I{ C i is a p-group. Since G ICi acts irreducibly and faithfully 

on Hdz, parts (b), (d), (e) and (g) are now immediate consequences of 
Lemma 2.16. 

(c) By Lemma 2.16, we may assume that IG/Cil = 32 ·7 apd p = 3. 

Thus G/Ci has a cyclic I~orlnal subgroup I/Ci of order 21 ,that must act 

irreducibly on HdZ. If P ~ Cc(Z), then I/Ci acts symplectically aild 

irreducibly on HdZ. Since I/Ci is cyclic, II/Cil/2 3 + 1 (by [Hu, II, 9.23]), 
a contradiction. 

(f) In this case, Lemma 2.16 yields 'p = 2 and ll(CdCd divides 32 • 13 2 

or 7·13. Since I( ~ Ca(Z), in fact I(/l( n Ci ~ f(Ci/Ci ~ Sp(6, 3) and so 

13 2 t II(/I( n Cd· Therefore IIe/I( n Cil ~ 32 ·13. 

Step 8. 

(a) e ~ 5. 

(b) If p> 3 and e < 48, then one of the following occurs: 

(1) e = It = 52; 

(2) e = It = 32, p = 5 and I(/ F is extra-special of order 25 ; or 

Proof. Now e = It '" 1m with each Ii > 1 and e > 1 (see Step 3). ~y Steps 

7 (b) and 6 (c), e =/=3 or 4. He = 2, Steps 6 (b) and 5 yield F = C l = Ie, 

contradicting Step 2 (a). This establishes (a). Assume that, p ~ 5, so by 

Step 7 (g), no Ii is prime. \Since e = TIiIi < 48, and F = ni Gi , part (b) 
follows from Step 7, 

l"'l\..Jl)\)!.Ji~.I:) \\ i i 1,1 iJ-I\~I~I'~' : .•• z" Jl.'1i.i.l,1 .' , '.J 

Step 9. Let P E Sylp(G) and W be an irreducible Z-submodule of V. Then 

(a) ISylp(G)I·ICv(P)1 ~ IVI; 

(b) IVI,= I1Vl et
; and 

(c) IZI !IWI-I., 

Proof. Part (a) follows from the hypothesis that every vector is centralized 

by a Sylow p-subgroup. Part (b) is just a restatement of Step 3 (d). Since 

Vz is l~omogeneous and faithful and since' Z is cyclic, part (c) follows. 

Step 10. 

(a) II(/FI ~ e9
/

2 /2. 
(b) If p = 2, then II( / FI ::; e3 /2. 
( c) If ]J = 3, then 1](/ FI ::; e" /2. 

(d).If p= 3 and II = 2, then IIefFI ~ e")25
• 

Proof. Since Ie ::1 G,' we have HdZ is a completely reducible and faithful 

1(/ I( n C i module., By Theorem 3.5, 1](/]( (I Cil ~ (1?)9/4/2 = li9 /
2

/ 2. 

Since ni(I( n C i ) = P (by Step 5), 11(/ FI S; rri(I~/2 /2) ::; e9
/

2 /2. Noting 

that'p t II( / FI . IF / Z I, parts (b) and (c) similarly follow from Th~orenl 3.5 .. 

If p = 3 and 11 = 2, then](:i; C1 by Step 6 (b) .. For i > I, II(/I(nCilS; 

It /2 by Theorem 3.5. SInce e > 2 (by Step 8 (a)), ~t follows that n~ ~ 2 

and n7~2(I( n C i ) = ]( n C2 n '" nCm = F. Hence 

m 

I]{ / FI' ~ II (It/2) S; (e/2)4 /2 = e4 /25
. 

i=2 

Step 11. P ::; Cc(Z). 

Proof. Assume not. Since]e ::; Cc(Z) an~ Cc(Z) is a proper characteristic 

subgropp of G, Step 4 implies that Ca(Z) = I( is a p'-group. \fI,Te may thus 

,ch,oose Po ~ .P, with IPo I = p and Poi Ca(~). Tilere exists a Sylow 

subgroup Zo of Z with ZoPo a Frobenius group. Applying Lemma. 0.34, we 
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obtain ICv(Po)1 = IVI~/p, Thus p I dim(V) and ICv(P)1 :::; IVII/p, Since 
pte, Step 9 yields that 

ISylp(G)1 ~ Itvl te
(l'-l)/p and pit. dim(TV), (10.3) . 

where TV is an irreducible Z-submodule of V. Recall that IZI IIWI -.: 1. 

Also ISylp(G)1 :::; 1[(1 =II(/FI·IF/ZI·IZI. 

First assume that p ~ 5. By the first paragraph and Step 10, 

and so e
65 2: IvVl 8t

e-l0 .210
• Note that Itvi 2: 3 becauselZI I IWI - 1. 

If t > 5 tl 65 > 340e-IO 210 d . . . - , len e _ . an e < 5, contradIctmg Step 8 (a). So 

t < 5 ::; p, and (10.3) implies that ITVI ~ 32. Then e65 ~ 210e-40 and e < 5, 

again a contradiction. We thus assume that p ::; 3. 

We next co.nsider the case p = 3. By the first paragraph and Step 10 (c), 

e6IHrl/2~ ISyl3( G)I ~ IWI 2te/3, and so 

eIS ~ IW1 2t
e-3 .23 , 

(10.4 a) 

(l0.4 b) 

1ft ... ~ 3, then eI8 ~ 36e- 3,.'23 and e < 5, contradicting Step 8 (a). By (10.3), 

3 I dilll(lV). If !lVI ~ 64,' then (10.4 b) implies e < 5, a. contradiction. If 

IIIVI = 27, then (10.4 b) implies that e <.8 and so 5 ::; e ::; 7. This is a 

. contradiction since each prime divisor' of e divides lTV! - 1. Hence IWI = 8 

and (10.4 b) implies tha.t e < 14. Since IZ! I !WI - 1, IZ! = 7 = e .. Now 

F/Z is a faithful irreducible G/F-module of order 72 . Since 03'(G) = G, 

it follows from Theoren:l 2.11 t]lat IG/FI ::; 96 and'II(/FI ::; 32. Then 

ISyl3(G)I::; II(/FI·IF/ZI·IZI ::; 32.73, and (10.4 a) y'ields that 25 ; 73 > 
814

/
3 = 214 , a contradiction. . -

To conclude this step, we consider the case p = 2. By the first paragraph 

alld St.ep 10 (1)), 

e51WI/2 ~ ISyh( G)I ~ IWl te/2, and so 

e10 ~ 4IvVl te
-

2
• 

(10.5 a) 

(10.5 b) 
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. Since p = 2, aJso char (V) = 2 by Lemma 9.2, and thus, IWI 2: 4. If t 2: 2, 

eIO ~ 42e- 1 .and e < 9. But 2 t e and Step 8 (a) implies that; e = 5 or 7. 

Each prime divisor of e divides IWI-I. Thus e = 5 and \lVI ~ 16, or e = 7 

and IH'I ~. 8. In both cases, (10.~ b) gives a contradict~on because t 2: 2. 

Hence t = 1 and dim(lV) is eve~ by (10.3). 

If \WI .~ 26
, then' (10.5 b) implies that e < 6 and so e = 5 by Step 8 (a). 

In this case, 5 I IvV\ - 1 and sO IWI ~ 28
, contradicting (10.5 b). Hence 

ITVI = 22 or 24. Now every prime divisor of e divides IZI and therefore 

IWI - 1. Thus e is a {3,5}-number and when IWI = 4, e is a 3-power. 

Recall that no fj equals 3 (by Step 7). Using (10.5 b), we have only the 

following cases and e = II in all: 

IWI e = fl !ZI II(/FI 
4 27 ·3 at most 32 . 13 

4 9 3 5. 

16 9 3 or 15 5 

16 5 50r 15 3. 

Note that the order of 1(/ F is determined by Step 7 in the first 3 cases and 

by Theorein 2.11 in the last case, as 2 tiKI. By (10.5 a), 

This rules out the first case. In the remaining cases, 11(/ FI has prime order. 

Since 02(G/F) = 1 and G/I( is elementary abelian (see Step 4), we have 

that G / F is a Frobenius group of order 2\1(/ FI that acts faithfully and 

irreducibly on F/t. By Lemma 0.34, \CF/Z(P)\ = IF/ZI 1!2 = e~ Thus 

ITVle/2 ::; ISyh(G)! < II{/ FI . e . IZ\, which gives a contradiction in. each 

remaining case. 

Step 12. Recall that P E Sylp(G). We have, 

(a) 'ICv(P)1 ::; IV1 2/ 3 and ISylp(G)I~ IWl t
e/3; a~d 

,(b) If p:f. 2, then ICv(P)1 ::; IV1 1!2 and !Sylll(G)1 ~ IWl t e/2. 

Proof. Let Po :::; P with IPol = p, and choose a Sylow subgroupQ of F such 

that Po i CG(Q). Since VQ is homogeneous, Lemma 7.2 applied to QPo 
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irnplies that 

{ 
IVII/2 

\ ICv(P)1 ~ ICv(Po)1 ~ 
" , IVI 2j

3 

if P i= 2, 

if p = 2. 

Since ISylp(G)I'ICv(P)1 ;::: IVI ancllVI = IWlte by Step 9) this Step follows .. 

Step 13. p < 5. 

Proof. Assume that p,..'? 5. By St~ps 12 (b), 11 and 10 (a), we have 

ISylp( G)[ '? IWl te
/

2 and 

ISylp(G)I::; II</FI·IF/ZI::; e I3
/ 2 /2. Thus 

(10.6) 

(10.7) 

But ITVI ;::: 3 and hence e < 48. Every prime divisor ofe divides IZL which 

in turn divides ITVI-L, If e = 52, then IWI '? 11 contradicting (10.7). Thus 

Step 8 implies that 

e = 32
, p = 5 and KIF is extr'a-speciai of order 25. 

In the first. case, (10.6) implies that IWI 16 ::; ISy15(G)I::; 215 .35 and thus 

!1IVI < 3, a contradiction .. In the second case, a Sylow 5-subgroupF!. of G' 

: --"must centralize Z(K/F) ~nd s~ ISy15(G)1 = 11(/Z: CJ(/z(P)1 S 24.34 . By 

(10.6), ITVI 9t 
::; 28 

. 38
. Since 3 I e, 311vVI- 1 and hence IWI = 4), t =,1 

and IVI = 11IVI e = 49
. Now P ::; Co(Z) and Cv(P) is a Z-submodule of 

Vz · Thus ICv(P)1 = 4j f~r some j. By Step 12, ICv(P)1 ::; IV1 1 / 2 = 49 / 2 , 

and j < 5. Since V = ev(p) EB [V, P], ,5 must divide 49 - j ~ I, and hence 

ICv(P)1 ::; 43
. By Step 9,49 = IVI ::; ISyls(G)I'ICv(P)1 ::; 24 .34 .43 , This 

contradiction completes the step. 

Step 14. P' =' 2. 

Proof. By Step 13, we may assume that ]J = 3. It then follows from Step 12 

that 

ISyh( G)\ '? IWl te/2. (10.8) 

Since by Step 11 P S Co(Z), ISylp(G)1 ::; \1(/FI·IF/ZI = 11(/F\· e
2

• By 

(10.8) and 'Step '10 (c), (d), we have 

e 12 
;::: 4\w\e, and 

e12 ~ 210 ·\Wle if 11 = 2. 

Since IWI 2:: 3, it follows from (10.9) that e < 48. 

(10.9) , 

(10.10) , 

Since p = 3,3{ e. Now e = 11 ... 1m and no Ii is 4, 8, 16, or 32 by Step 7 

(b), (c), (d). By Step 6 (c), we also have that Ii =1= 2 for i::: 1. Also e '? 5, 

by Step 8 (a). Assume II = 2 so that m '? 2 and 12 = q;2 with (h '? 5. 

Since 2 I IFI, it follows thatlTVI -I 8, and Q211H'1 - 1 implies IB'I '? 11. 

As e '? 10, (10.10) gives a contradiction. Hence Ii = qIl
; for a prime qi '? 5 

(i = 1, ... , m). Then IWI '?8 and (10.9) implies that e < 16. Thus e = 

II = ql is 5, 7,11 01'.13. ~ow G/F'i~ an irreducible subgroup of GL(2,Ql), 

(G / F)' = 1(/ F i:- 1 and G / 1( is a 3-group. Thus part (c) of Theorem 2.11 

applies, aI~d since 03'(G) = G,Z(G/F) has index 22·3 in G/F. Hence 

ISyb( 0)\ ~ 22 . e 2, and inequality (10.8) yields 22 . e2 '? I WI ej2 ~ 8ej2
. 

Consequently, e < 5. This contradiction completes the proof of this step. 

Step 15. Conclusion. 

Proof. It remains to consider p = 2. ,Since P ~ Co(Z), it follows from Step 

.10 t~at ISyl2( G)I ::; If{ / PI . IF / Z I,::; e5 /2. By Step 12, 

ISyl2( G)I '? \TVl te/3, and so (10.11) 

(10.12) 

Since p = 2, we have by Lemma 9.2 that char (V) = 2. 

, Applying (10.12), we get the following upper bounds for e, given IWI. 

IWI 4 8 16 32 64 '?. 128 

upper bound for, e 64 32 ·16 16 6 4 
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Since IZI IlVI - 1, indeed IW! ~ 4. Each prime divisor of e divides !ZI 
and also divides IWI - 1. Since e ~ 5, the cases where IWI ~ 32 yield, 

contradictions. Now e = hl2 ... I~ ~ 5 and no Ii is 3 by Step 7 (b). When 

IlVI = 16, it follows that e = II = 5 or e = 11 = 32 • When IWI = 8, e 

must be a power of 7 and so e = 11 = 7. When !TV! =,4, then e = II is 32 

or 3
3
. Since e = II in all cases, F/Z isa faithful irreducible G/F-module. 

Applying Step 7 and Theorem 2.11 to the action of G/F on F/Z, we are 

limited to the following possibilities: 

IW! e == 11 
16 5 
16 3~2 

8 7 

I]{IFI 
3 

5 

3 or 32 

at most 32 • 13 

'4 32 5. 

By (10.11), !H'le/3 ::; ISyh(G)1 ::; II{/PI· e 2 • This yields a contradiction 

except in the following two cases: !WI = 4, e~ 32 ) and !WI= 8, e = 7. 

When e = 7, it follows from Step 3 (e) that GIF b 5p(2,7) and so II(IFI = 

3. In both the remaini~g cases, I]{ I FI is prime. Since by Step 4, G /]{ is 

elementary abelian and 02(G/F) = I, it follows that G/F is a Frobenius 

group of order 2I I(/FI. Now G/F acts faithfully and irreducibly on FIZ 
and so ICp/z(P)1 = IFIZI 1

/
2 = e (see Lemma 0.34). Therefore, by (10.11),_ 

-lvVlc(:1 ~ ISyl2( G)I ~ 1](1 Fl· e, which is a contradiction in both cases. The 

proof of the theorem is now complete. 0 

We next delete the hypothesis that OP' (G) = G in the above theorem. 

10.5 Theorem. Assume tllat V is a finite faithful and pseudo-primitive 

G-module for a solvable group G. -Suppose tlJat"p IIGI but p t !G : C G ( v)1 

for all v EV (p a fixed prime). Then V is an irreducible G-module and one 

of the following occurs: 

(i) OP',P(G) is a cyclic pi_group and G::; r(V); 

(ii) IVI == 3
2

, p = 3 and G is isomorphic to SL(2,3) or GL(2,3); or 

(iii) IVI = 26
, P = 2 = IG : F(g)1, F( G)' is extra-special of order 33 and 

exponent 3, Z(F(G)) = Z(G) and 02'(G) = G. 
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Proof. Let H = OP' (G) and I{ ~ OP(H). The actiOll of H on 1/ satisfies 

the hypotheses of Theorem 10.4; in particular, V.f/ is irreducible .. Since ea,ch ~ 

v E V is 'centralized by some Pv E Sylp(H) and H = J( Pv , e~en VI( is 

'irreducible. If I( is cyclic, then G :::;, r(V) byThe~rem 2.1. If secondly 

IVI = ::31, p = 3 and H = SL(2j 3), then G = H or G = GL(2,3), as 

5L(2,3) has index 2 inGL(2, 3). 

By Theorem 10.4, we may assume that ]( ~ F(H) is non-abelian of order 

3a and exponent 3, IH / ](1= 2 = p, Z(In = Z(H) and IVI = 26
• In this 

case however Example 10.3 (c) shows th~t G = H. o 

Corollary 10.6. Suppose that V is' a finite faitilful and pseudo-primitive',· 

G-modul~ for a solvable group G. 'Assume tl1at 7r- 'I- 0 is a set of prime 

divisors of IGI, and that CG( v) contains a Hall-1f-subgroup of G for all 

v E V. Then V is an irreducible G-module and one of the following occurs: 

(i) G:::; r(V), G /F( G) is cyclic and F( G) is. a 1f'-group; 

(ii) IVI = 32 , 1f = {3} and G isisomorpllic to SL(2, 3) or G L(2, 3); 

(i~i) IVI = 26 , 1f = {2}, F( G) is extra-special of order 33 and exponent 3, : 

IG/F(-G)I = 2, Z(F(G)) = Z(G) and 0 2
' (G) = C. . 

Proof. Choose some p E.1f and apply Corollary 10.5. If G :::; r(V), 

then G/F(G) :::; r(V)/fo(V) is cyclic. Finally, the hypotheses imply that 

071'( G) ~ Ca(V) = 1 and so F( G) is a 1f'-group. 0, 

The presentation of sections 9' and 10 is based on Wolf [Wo 3], Gluck & ' 

Wolf [GW 1] and Manz & Wolf [MW 1]. 

§11 Aritlunetically Large Orbits 

Suppose G is a solvable irreducible subgroup of GL(V) where V is a finite 

vector spa.ce of order qll, q a prime power. The intent of this section is to 

show that G has a large orbit { v G } on V in the sense that I{ vG} I is divisible 



\ ,'.1 

; " 

by lnany prime divisors of IGI. Of course, exceptions occur. Most notably 

if G = r(V), then the orbit sizes are 1 and qfl - 1 while 101 = n(qH _ 1). 

Choose H ~ G. such that V = }Vo for a primitive irreducible H-module 

lV. If HjCH(W) i feW), then we show there exists v E V with l{vO}1 
divisible by each prime'" divisor p of IGI with p .~ 5. A large part of the 

proof is devoted to the case when V = W is primitive. The proof here is 

similar to and uses results of Section 10. To pass from the primitive to the 

imprimitive casel.we use Corollary 5.7 (a) to Gluck's permutation theorem. 

This corollary states that given a solvable permutation group G on a set fl., 

there exists a stlbset 6. ~ fl. such that stabc (6.) is a {2, 3}-group. Since this 

corollary cannot be improved (to delete 2 or 3), this explains, in part, why 

we only consider prime divisors p of IGI with p ~ 5. These small primes 

pose other difficulties too. 

For H ~ G, we let ?ro(G : H) be...the set of those primes p ~ 5 that divide 

IG: HI· Likewise, we define ?ro(G). Our first lemma examines small linear 
groups as in Section 2. 

11.1 Lelnma. Suppose that G is a solvable, irreducible subgroup of 
GL(1i, q), q prime. ' 

(11) If qll = 2\ then ?ro(G) = 0 or G-:::, f(24); 

(b) Ifqfl = 26
, then ?ro( G) = 0 or G is isomorphic to a subgroup of 

f(2 3
) wr Z2 or r(26 );' 

(c) If qTt = 28
', tllen ?ro( G) = 0 or G is isomorphic to a subgroup of 

f(24) wr Z2 or r(~8); 

(d) If q7l = 210
, then G is isomorpllic to a subgroup of S3 wr F 20 , 

f(2 5
) WI' Z2 or f(210); 

'(e) If qTl = 34, th,en 7ro(G) ~ {5}; and 

(f) Jf qH = 36
, then l7ro(G)1 ~ 2 and G has a non~al Sylow p-subgroup, 

for all p E 7ro( G). 

Proof. ,:Parts (a), (b ) arid (d) are immediate from Corollary 2.15. 

We first observe that if ]{ ~ G L(pTn ,p) is irreducible, quasi-priluitive and 

solvable (with p prime), then ]( ~ f(ppm). Since Op(K) = 1, Corollary 2.5 

implies that F(I() is abelian. Then Corollary 2.3 yields that ]( ~ r(ppm). 

(c) If qH = 2 8 , then the last par~graph implies t,hat G ~ f(2 8
), that 

G ~ 3 3 WI' S4, or G ~ II WI' Z~ for a solvable irreducible H ~ G L( 4,2). 

Part (c) now follows from part (a). 

(e , f) Suppose now that qll is 34 or 36 and that G is not a {2,3}-group. 

First assume that G is not quasi-primitive. Then G ~ II wr S for an 

irreducible linea~ group H and solvable 'primitive permutation group 5 ~ 

Snl) with min. Since n is 4 or 6, m ~4. Thus S is a {2, 3}-group and hence 

H is not. Thus H is an irreducible subgroup of GL(3, 3), n = 6 and G ;S H 

wr Z2' Since II is ilOt a {2,3}-grollp, H is quasi-primitive. By the next. t.o 

last paragraph, H .. ~ f(3 3 ). Con~lusion (f) holds because ?ro(G) ~ {13} and 

,G has a normal Sylow 13-subgroup. 

, We thus assume the corresponding G-module V is quasi-primitive, ,IV I = 

34 or 36 . We apply Corollary 1.10 and adopt its notation. Since we ,may 

assume th~t G i r(V), then e := IF : T1 1
/

2 > 1 by Corollary 2.3. Since 

03(G)=1 and eln, e is 20r 4. Let }V be an irreducible U-subluod~lle of V. 

Then di1l1(W)lnle (by Corollary 2.6) and IUIIIWI- l. 

First suppose that e = 4. Since eln, we have that n = 4, dim(HT
) '= 1 and 

lUI = 2= ITI. In this case, A = G and F/~ is faithfulG / F-modulc of order 

24. Furthermore, FIT is an irreducible G IF-module or the direct product 

of 'two irreducible modules of order 22. By (a), 7ro(G) = 7ro(GjF) ~ {5}. 

Conclusion (e) holds. 

Finally assumelhal e = 2. Now FjT is a completely reducible A/F­

module of order, 22. Thus ?ro(A/T) = 7ro(Aj F) = 0. Now dim(W)ln/2 and 

so IWI is 3, 32, or 33
. Then lUI divides 8 or 26.", Since ~ = Co( Z) and U 

is cyclic, ?ro( G /T) = ?ro( G / A) = 0 and ?ro( G) = ?ro(T) = ?ro(U) ~ \ {13}. 

Furthermore, ?ra(G) {13} is possible only 'when IWI 33 and 11 6. 
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Conel usions (e) and (f) hold. o 

11.2 Proposition. Let G be solvable. Tllen the number ISyl( G)I of distinct 

Sylow subgroups of G (for all primes) is at most IGI. 

Proof. By induction on IGI. We note that equality holds when IGI f 2. 

We may choose a maximal normal subgroup 111 of G and set q = IGlkII, 
a prime. By the in.ductive hypothesis, ISyl(1I1)I S; lvi. If P E Sylp(G) for 

p =/ q, then P E Sylp(AI), and so the number of Sylo,:, subgroups of (). for 

nIl primes other thanlJ is at lllo~t 1111/. But ISylq(G)1 S; IGlhl = 1111/: Hence 

ISyl( G) I S; 211111 S; IGI· 0 

11.3 Theorelll. Let V be a finite faithful quasi-primitive G-moclule for a 

solvable group G. Assume that ead] v E V is centralized by a non-trivial 

Sylow p-subgroup of G for some prime p ~ 5 (dependent all v). Then 

G ~ reV). 

Proof. We let 11' be the set ,of prime divisors p ~ 5 of IGI for which C yep) i= 0 

for P E Sylp ( G). The hypotheses imply that each v E V is centralized by a ' 

Sylow p-subgroup for some p E 7r. Thus 11' =/=0. By Theorem 10.5, we may 

assume that 111'1 ~ 2. 

Let F = F(q). For 1 =/= Q E Syl(F), Cv(Q) = {OJ by the irreducibil­

ity of V. Thus F is a 7r'-group. In particular, 7r ~ 7ro(GIF) and hence_ 

l7ro( G I F)I ~ 2. 

Since V is quasi-primitive, Corollary 1.10, applie~ and we adopt the no­

tation there. Set e2 = IF : T/. By Corollary 2.3, we assume that e -> 1. 

We set elF = CO(F(FIT) and observe by Corollary 1.10 (vii) that G' ~ A. 

and An e = F. Thus elF S; Z(GIF). 

. Step 1. :-Let DIU E Hall 1T ( c IU). Then D :s! 0, DIU is abelian, and DIU 

is G-isomorph~c to a Ha1l7T-subgroup of G I F. Furthermor~, U = C D( Z). 
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Proof. Let Dol F E HalL,~U? I F). Because elF ~ Z(G I F), note tliat Do::J G , . 

and Dol F is abelian. Sin:ce nO]J E 7r divides IFI, Do = F D and Fn D = U. 

Since D centralizes FIT and T/U, we hav~ that DolU = F/U x D/U 
and DIU char DoIU. Thus D g G and DIU ~ DolF is abelian. Now 

U S; DnA = D n e n A = D n F = U and thus C D( Z) = AnD = U. 

Step 2.' Let ltV be an.irreclll~ible U-submodule of V. Then 

(a) IVI = IWI tc for an iriteger t; 

, (b) IUIIIWI-,1. 

Proof. By hypothesis, IV I is finite. Part (a) is just Corollary 2.6. Part (b) . 

is immediate because Vu is homogeneous and U is cyclic. 

Step 3. Let p E 11' and P E Syl]J(G). Then 

(a)ICv(P)1 ~ IVI1(2; 

(b) If 1 ~ I:l S; P nD, then IGv(PdlS; IVllls and]J It. dim(vV). 

Proof. Let 1 ¥ Po S; P with IPo I = p. Recall that p t IFI. First suppose 

that p I IDland assume without loss of gerierality that Po ~ D . . Sin~e 
U = C D(U) by Step 1 and p f lUI, we may choose 1 i= Y S; Z with Y Po 

a. Frobenius group. Note C v(Y) :'=. 0 because Y g G. Then dim(V) = 

p. diIn(Cv(P)) by Lemma 0.34. Since dim(V) = t~ dim(l¥) and p f IFI, in 

fact pit. dim(W). Parts (a) and (b) follow when p IIDI. 

Choose'Q E Sylq(F) such that Po i Co(Q). ApplyLemma 7.2 or Lemma 

0.34 to conclude ICv(P)/ ::; IV/liZ (recall p ~ 5). This step follows. 

Step 4, 

(a) L L ICv(P)1 ~ IV/; 

(b) IGI ~ L ISylp(G)1 ~ IV'11/2; and 
pE1T 

(c) Some p E 7r does not divide IDI. In particular, IG/GI i~ divisible by 
p. 
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~roof. (a, b) Since 'each v E Vis centralized by'some Sylow p-subgroup for 

some p Ei,UPE 7r UPESylp(G) Cv(P) = V: Thus Lp E7r LPESylp(G) ICv(P)1 
2': IVI· Applying Step 3 (a) and Proposition 11.2, , 

VV~ have proven (a) and (b). 

(c) Assume each p E 7r divides IDI. Since_D ~ G, the intersection of D 

with a Sylow subgroup of G is a SylQw subgroup of D. Thus each v E V 

is centrali~ed by a non-trivial Sylow p-subgroup of p for some p E 7r. As 

above, IVI,::; L:PEn L:PESYlp(D) ICv(P)I· By Step 3 (b),ICv(P)1 ::; IVl l
/

5 

for P E Sy11J(D), p E 7r. Hence L:JlE7r ISyl]J(P)1 2':IVI'1/5. For p E 7r, 

ISyl]1(D)1 ::; LUI bec~use DIU is_ abelian. By Step 1, DIU acts faithfully on 

the cyclic gro~lp Z :s; U and hence 

Thus 

IVI"/5 :s; :L ISy11J(D)1 :s; 17rIIUI ,:s; 10g2(IUI) lUI· 
pEn 

By Step 2, 

Thus 

Since e > 1, e ~ 2 and IU1 3
/

5 :s; 10g21UI. Then lUI < 2, a contradiction. So 

some p E 7r does not divide IDI. 

Step 5. 

(a) e13 > 4j1IVl te
-

4
. 

(b) e::; 32. 
,: 

( c) , No prime la.rger than 3 divides e. 
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Proof. By Corollary 3.7, lei :s; ~13/2IUI2/2. By Steps 4 (b) and ~ (b), 

-and 

(11.1) 

Since IvVI 2 3, (11.1) yields e < 64. If ITIYI is 3, 4 or 5, then lUI and hence 

e are bpth powers of 2 or both are l)owers of 3. In this case, e :s; 32. If, 

however, ITVI2 7, then (11.1) implies that e:S; 32. This proves (a) and (b). 

Vve now assume that sle for a prime s 2 5. First suppose that s > 7. Then 

IvVI 2:- 23 and (11.1) implies that e < 17, whence e = 11 or 13. Suppose that 

e = 11. By (11.1),lvVI is 23 01: 67. Si~lce Z :S;U and IUIIITVI-.: I, IZII GG. 

But elF:S Apt(Z) arId so GIF is a ,{2,5}-group. Now GIG :s; GL(2, 11) 

and so G/G is a {2, 3, 5, 11}-group. Every prime in 7r divides IGIGI or 

IG I FI and is at least 5. But no prime in 7r divides IFI or e, in particular. 

Thus 7r ~ {5}, a contradiction because 17r I 2 2 (see the first paragraph of 

the theorem's proof). So e i= 11. Should e = 13, then IvVI = 27 and we 

similarly derive the contradiction 7r ~ {7}. Hence s ::; 7. 

Next considers = 7. Should IvVI 2 29, then (11.1) implies e < 14, whence 

e, = 7. If IvVI < 29 then IvVI = 8 and part, (b) implies that e = 7. Then 

GIG:S; GL(2, 7) is a {2, 3, 7}-group. Since 71e, 'no prime in 7r divides IGIG/, 
contradicting Step 4 (c). Hence s must b~ 5 and ITIVI 2 11. Now (11.1) 

implies that e < 20. Now FIT' = rr;=l (FdT) is a completely reducible 

and faithful G/G-module with ~ach IFdTI =: er (see Corollary 1.10). Thus 

e ... = el ... el is 5, 5·2, or 5·3. ,Since GL(2,7') is a {2, 3, 5}-group whenever 

f E {2,3,5}, GIG is a {2,3,5}-group. Since 51e, w~ have th~1.t GIG is a 

7rt-group, again contradicting Step 4 (c). This step is complete. 

Step 6. Writing e = el ... et as in the last paragraph, we n;ay assume that 

Cl '~ 23
• Furtherniore, if e] = 23 then e2 = 22 and e = 23 . 22. 

Proof. Now FIT = F] IT X . ',' x, FelT \vhere each ,FdT is an irreducible 

G/G~modllle oforelcr cr. Set Gj = Cc(FdT) so thatG = nf==l G j. \Ve have 
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by Step 4 (c) that at least one prime p E 7f divides I G / CI. Vie may assume 

that p IIG / GIl· Thus el is not 2 or 3. Since e S 32 and e is divisible by no 

primes larger than 3 (see Step 5 (b, c)), we may assume for this st'ep that' 

e1 is 22 or 23. 

First suppose that el is 22 and every ej S 4. By Lemma'l1.1 (a), each 

G/Gi is a {2, 3, 5}-group with a normal (possibly trivial) Sylow 5-subgroup. 

Sinc.e nGj = G and G/F S Z(G/F), it follows that G/G is a {2,3,5}­

group and G / F has a normal Sylow 5-subgroup. Eac.h q > 5 in 7f lnust 

divide IG / FI and hence ID /UI., Also for q > 5 in 7f and Q E Sylg( D), we 

have 1 =J Q E Sylq( G). Let P E Sy15( G). Each v E V is centralized by some 

conjugate of P or by a Sylow q-subgroup of D with q > 5, q E 7f. Th,":s 

ISy15(G)IIGv(P)1 -+ L L ICv(Q)1 ~ IVI· 
5<qE7r QESylq(D) 

Since,FP ~ G, ISy15(G)1 s IF/TIIUI = e21UI. Applying Step 3, Proposition 

11.2 and Step 1, 

Now ICv(.P)1 :; IV1 1
/

2 by St.ep 3 alld lUI < IH'I hy Step 2. Thus 

IVI S e
2

1WIIV1 1
/
2 + IWI

2
IVI

1
/
5
. 

Now IVI 3/ 10 ~ 1l1'13
e/lO ~ IvV1 12 / 1o ~ 111'1 and so IvVIIVI 1

/
2 ~ IvVI 2 IVI 1

/
5

• 

Hence 2e2IWIIVI1/2~IVI. Since IVI ~ IWle, we have 4e4 ~'IWle-2. Since 

e ~ 4, 111'1 < 32. Since Z is cyclic and IZI I IliVI - 1, Aut(Z) and D /U 
are easily checked to be {2, 3, 5}-groups. Hence 5 is the only prime in 7f, a 

contnidiction. Hence el is not 22.' 

For this step, we next assume that el = 23. Since e S 32, we may assume 

that ej S 3 for i > 1 and so G /Gi is a {2, 3}-group (i >.1). Since p IIG /ell, 
it follows from Lemma 11.1 (b) tha't 'p = 7 is the unique p E 7f dividing 

IG/GII and that G/G1 has a normal Sylow 7-subgroup. As abov~ G/G 

and G / F have normal Sylow 7 -subgroups. As in the previous paragraph 
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4~4 ~ IvVle-2. Since e ~ 8,111'1 < 6. TheIl Aut(Z) andD/U are {2,3}­

groups and 1'Tt1 = I, a contradiction. This step is complete. 

Step 7. D = U. 

Proof. By Step 5, we have that 

(11.2) 

If t ~ 5, then e13 , ~ IlIV1 5
e-4 . 4 ~ 4 . 35e - 4 and e < 4, contradicting Step 

6. So t < 5. We may assllme that D > U and choose q a prime dividing 

ID /UI· By Step 3, ql dim(lIV) and note q ~ 5. 

Because e ~ 8, (11.2) implies that IvVI S 237 /4 S 620. Since q ~ 5 

divides dim(W), we must have that IWI is 25 , 27 or 35 • In the first two 

cases, 111'1-1 is a prime and so lUI is 31 or 127, whence 31 01"127 divides e, 

contradicting Step 5 (b, c). Thus IliVI = 35. By (11.2), e < 16. Since each 

prime divisor of e divides IWI- 1, e is a power of 2 by Step 5 (c). Applying 

Step 6, we get e = 23 .22
, a contradiction. 'Thus D = U. 

Step 8. e = el = 25
. 

Proof. First we show eJ =J 32. If el = 32, observe that ei S 3 for i > 1 (Step 

5 (b)). Then G/G l and G/G are {2,3,5}-groups by Lemma 11.1. Since 

D = U, 7f ~ {5}, a contradiction. Thus el f. 32
• 

By Steps 5 (b ) and 6, we have that e' = el": el is 23 . 22, 24, 24. 2, 

33 or 25. For now, exclude the last'. case. By Lemma 11.1 and Step 7,. 

17f1 s 2 and each Sylow p-subgroup of G/G for p E 7f is normal in G/G. 

Since G / F S Z( G I F), F P / F ~ G / F ~henever·P E Sylp( G), p E 7f,' Since 

e ~ 16, IWI <: 23 by Step 5. Because IUIIIWI- 1 and 'IT /UI s 2, Aut(U) 
is a {2, 3}-group and P ::; Ca(T). Thus /Sylp(G)/ ::; )FIT) = e2

• ijence, by 

Steps 4 and 2, 

pE7r 

" 
, > 
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Since e 2: 16, this is ~ contradiction, completing this step. 

Step 9. Conclusion. 

Proof. We have that e = el = 25 and char (W) =1= 2. By Step 5, IWI = 3. 

Thus U = T has order2 and A = G. Furthermore 1f ~1r0( G I F) has at least 

2 elements'. Since FlU is an irreducible faithful G I F'-module, 1f ~ {II, 31,.5} . 

by LCll11Ila 11.1. In fact, GIF.:::' f(25
) wr Z2 or GII!' :::'f(210). Observe 

that G I F has' normal Sylow p-subgroups, for p = 11 and 31, and IG I FI 

divides 31 2 .52
. 2 or 33·31 . 5.·2. Since U :::; Z( G)" 

and 

By Steps 4 and 2,' 

3]6 ::; IliVl e
/

2 
::;' IV1 1

/
2 ::;:L ISylp( G)I ::;210 + 210 ,+ 221 :::; 222. 

1,Err 

This contradiction completes the proof of the theorem. o 

One should note again that in the action of G L(2, 3) on its naturalillodule 

W, each w E W is centralized by a ~ylow 3~subgl'oup, but GL(2,3) i f(3 2 ). 

vVe next proceed to imprimitive modules. If V is an irreducible, faithful 

G-rIlodule, then V = ·We for a primitive module 'l1V of a subgroup H :::; G. 

If HI C H(liV) i r(W) (we~ssume V finit~ and G solvable), we show that 

there exists sOille'v E V with 1fo( G : Ce( v)) = 1f0( G). This uses the above 

Theoreln'l1.3 together with Cor<?llary' 5.7 of Gluck's permutation theorem 

. 5.6. 

11.4 Theoreln. Suppose that V is a finite faithful irreducible G-module 
i 

aud that V = HrG ,for nn (irreducible) primitive module 11V of/I for some 

,.).) 

H ::;-G (possibly H = G). Assume that HI C H(W) '1:. r(llV), but G is 

solvable. Then tlwre exists v E V such tlmt 1fo( G : Ce( v)) = 1fo( G). 

Proof .. Since V = liVe, we may write V =' X 1EB·· 'EBXm for subspaces Xi of 

V that are transitively permuted by G with liV = Xl. For H::; J ::; G, TIV J is 

irreducible and hence H = Ne(W) = Ne(Xl)' Since HICH(liV) i r(liV), 

Theorem 11.3 implies there exists 0 =I Xl E .11' such tha.t 

Let Hi = Ne(Xi)' a conjugate of H. But the Hi/CHi (Xi) are isomorphic 

as linear groups and so there exist, by Theorem 11.3, 0 =I Xj E Xj such that 

1f 0 ( H j I C II; (:r j )) = 7f 0 ( H j I C J I j (X j ) ). = 7f 0 ( HI C J J ( l V) ) 

'for each j. 

Next let C = n~l:l Hi == n::l stab e(Xi ), so that G /C faithfully and 

transitively permutes {Xl"" ,Xm }. By Corollary 5.7, we may now as­

sUme without aliy loss of generality that there _ <:xists 1 ::; .e ::; 1n such that 

stabe/c{Xl, .. ~,XJ;} is a {2,3}-group, Let X = :Z:l + ... +:z:e and suppose 

that Q E Sylq(G) for a prime q ~ 5 and Q :::; Ce(x). Then Q Inust 

stabilize {Xl,"" -X'd and hence Q ::; C = n~:l H j • Now Q must cen­

tralize Xl,X2,· .. ,Xe. Since q f IHi :CH;(:tj)l, the first paragraph implies 

that q f IHdC Hi (Xi)1 for i == 1, ... , e. Since C ICC(Xi) ~ C ICc(Xj ) for 

j = 1, ... le, ... , m and n~:1 CC(X i ) == 1, C is a q'-group. Since Q :::; C, 

Q := 1. Hence 1fo(G) = 7fo(G: Ce(x)). o 

11.5 Corollary. Suppose V is a faithful finite mod';1le, for a solvable group 

G. Suppose V= VI 'EB ... EB 11;1 for irreducible G-modules Vi (we allow V 

to have "mixed char~cteristic"). For each i, write Vi = liVF- for a primitive 

module Wi of a subgroup Hi :::; G. Assume Hi/CH;(liVi ) is not isomcJlpllic 

to a subgroup of r(l/Vi) for all i. Tllenthere exists v E V such ·that 

1f 0 (G :. C G' ( v)) = 1f 0 ( G) . 
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Proof. Applying Theorem 11.4,_ there exists, for each i, Vi E Vi such tha,t , 

7r0(0 : ~GCVi)) = 7ro(G/CG(Vi)). Set v = V1 + ... + VJl~ If P > 3 a,nd 

P E Sylp(G) centralizes v, then P centralizes each Vi and so P ~ CG(Vi ) for 

all i. This implies P = 1 and p f IGI. SO 7ro(G: CG(v)) = 7ro(G). 0 

Chapter IV 

PRIME POWER DIVISORS OF CIIARACTER DEGREES 

'§12 Characters of pi-degree and Brauer's 

Heig'ht-ZeroConjecture 

Suppose N S! G, B E Irr(G), and X(l)/B(l) is a p'-number for all irre­

ducible constituents X of BG. The bulk of work in this section: will be aimed 

at proving that GIN has art abelian Sylow p-subgroup, provided GIN is 

solvable. With little extra work, we see that p can be replaced by a set of 

primes. As a coilsequence of this and Fongreduction (Lemma 0.25 and The­

orenl 0.28), we then prove Brauer's height-zero conjecture for solvable G. 

Namely, if B is ap-block of asolvable group, then all the ordinary characters 

in B have height Zero if and only if the defect grou'p for B is abelian. The 

contents of this section are [Wo 3, GW 1], and while the arguments are es­

sentially the same, some imp'rovements and refinements should improve the 

reading thereof. Brauer's height-zero conjecture was extended to p-:solvable 

G in[GW 2), with the help of the classification of simple groups. ' 

In the key Theorem 12.9 of this 'section, we have 'N S! G, B E Irr (N) and 

x(l)IB(l) a p'-number for all X E Iri(G/B). The aim is to show that GIN 
has abelian Sylow,p-subgroup, at least when GIN ts solvable. In a minimal 

counterexaniple, there exists an abelian chie~ factor lvl I N 'of G such that 

each A E Irr(M/N) is invariant under some Sylow p-subgroup o~ Glfi.1. 

Consequently, the results of Sections 9 and 10 play an important role. 

12.1 Proposition. Suppose that H acts on an abelian group A. Then 

(a) H acts faithfull'y all A if a.nd onl'y if H acts faithfully on Irr (A). 

(b) 11 acts irreducibly 011 A if and .only if II acts irreducibly.oll Irr (it). 
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Proof. Note tllat the actions of H on A and A* = Irr(A) satisfy )..h(ah) = 

A(a) for a E A, h E H, and A E A*. LikewiseH acts on A** and bh(Ah) = 
b( A) for b E A **, A E A *. There is a nat'ural isomo,rphis:ll from A to ~r** 

given by a I--? a** where a**()..) = )..(a) (see [Hu, V, 6.4]). Now 

for a E A h E H ).. E A *. This natural isomorphism is hence an H-
" ", ' 

iSOl110rphism .. Thus H acts faithfully (irreducibly) on A if and only if H 

acts fai thfully (irreduci bly, resp.) on A **. 

If It E H centralizes a group B, h ads t'rivially on In (B). Thus 

This proves (a) . .If 1 < D < A is H-invariant then 1 < (AID)* < A* IS 

H -invariant. Applying this twice, 

A ** irrcducible =} A * irreducible ==} A irreducible ==} A ** irreducible. 

This proves (b). o 

Alternatively, to prove 12.1 (a), one can use Brauer's permutation lemma 

[Is, 6.32L We employ this in the next lemma, which is related to Proposition 

12.1 (a). 

12.2 Lenllna. Ass·unle tlmt S acts on G with (IS\, IGI) = 1. If S fixes every 

irredl.·lcible clJaracter of G, then S centralizes G. 

Proof. With no loss of generality, we may assu'me that S =1= 1 is a cyclic 

p-group for some prime p. Since S is cyclic, Brauer's permutation lemma 

(Is, 6.32] iluplies that S fixes each conjugacy class C of G.Since p t ICI ~.nd S 

is a p-group, en CG(S)# 0. Since this is valid for each conjugacy class of 

G, we have, that G = U9~O CO(S)9. Since G is finite, G = Co(S). 0 

Chap. 1 V I·)., 

12.3 Proposition. Let N ~ G, 8 E Irr (N) and X E Irr (GI8). The follow­

ing are equivalent: 

(i) XN = e8 with e2 = IG : Nli 

(ii) 1o(~) = G and X vani;hes off N; and 

(iii) 1G ( 8) = G and X is the unique irreducible constituent of 80 . 

Pi'oof. This is Exercisc 6.3 of [Is]. o 

In Proposition 12.3 above, we say that X and 8 'are fully l'amified with 

respect to GIN. Before proceeding wi th the main result of this section, we 

need some information on fully ramified sections. 

12.4 Lelllilla. Suppose that GIN is abelian,<p E Irr (N), and X E Id (GI<p) 

!s fully ramified with respect to GIN. Suppose that S acts on G fixing N, 

<p, and (hence) X~ Assume that (lSI, IGIN\) = 1. Set GIN == CG/N(S) and 

DIN = [GIN, S]. Tl1en ' 

(a) X is fully ramified witIJ respect to both GIG and GID; and 

(b) <p is fully ramified wi th respect to both C I N arid DIN. 

Proof. Since GIN is abelian; C ~ G. Because X is the unique irreducible' 

constitucllt' of <po, the irrcduciblc constitucnts of <pc and Xc coincide. By 

Lemma 0.17 (b, f), XC has a unique irreducible S-illvariant constitucnt, 

whereas every irreduCible constituent of cpc is S-invariant. Th~s <pc has a 

unique irreducible constituent (3 and 10 ((3) = G = I G( cp). By Proposition 

12.3, X and <p are fully ramified with respect to G Ie and C I N' (respectively)., 

A similar argument shows that X and cp are fully ramified wi th respect to 

GID and DIN (respectively). 0 

12.5 Len-una. Suppose that N ~ G witiJ GIN abelian. Assume tllBt 

<p E Irr (N) is fully ramificd wi th respect to GIN. Then 

(a) GIN =: A X A for an abelian group A; and 
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. (b) If G / N is a p~gTOUp, if Q is a q-group acting on G fixing N a.nd cp, 

if q f: p and Q/CQ(G/N) is abelian, tllen rank(Q/CQ(G/N» ~ 

rank ( G / N) /2. 

Proof. (a) ~ (b). By induction on IQ/Qol, where Qo = CQ(G/N). By 

(a); we may assume that rank(G/N) ~ 2 and thus we may assume that 

,Q/Qo is not cyclic. We may choose Qo, < Q1 < Q such that 

rank (Q/Qo) = rank (Q/Qd + rank (Q1 /Qo). 

By Fitting's Lemma 0.6, G/N = G/N x D/N whereG/N = Ca/N(Qd 

and D/N = [G/N,Q1J. Now Q/Q1 acts faithfully on GiN and QdQo acts 

faithfully on D/N. Applying Lemma 12.4 cl.nd the inciuctivehypothesis, 

rank (Q/Qo) = rank (Q/Q1) + rank (QdQo) 

::; ,rank (C /N)/2 + rank (D /N)/2 = rank (G/ N)/2. 

Hence (a) implies (b). 

We next prove (a) by induction on IG/NI. 'By [Is, Theorem 11.28], we may 

iUi:C;IlIlW Umt cp is linear, and fai tlrfnl. Since cp is also G-invari;:Ult, N ::; Z( G). 
If X is the unique irreducible constituent of cpc, then X vanishes off N by 

. pi'opositioll 12.4 and so N = Z(G). Note t.hat N is cyclic and G' :::; N. 

, Choose :1; E G such that o(N x) is maximal. Set D = (N, x) and G = 

Cc(D) = Cc(x) 2:: D. Then G/G acts faithfully on D, while centralizing 

both D/N and N. By Lemma1.5 and itspr?of, we have that IG/GIIID/NI 

and G/G:S Hom(D/N,N). Since D/N and N are cyclic, G/G is also cyclic. 

Let .\ E Irr(Dlcp) and, E Irr(GI.\). Not~ X E Irr(GI,). Since D is abelian 

and centralized byG, it follows that .\ is linear and ,D = ,(I»;. By [Is, 

Le~1ma 2.29], ,(1) ::; IC: DI 1
/

2
. Thus; as IG/GII ID/NI, 

IG/NI 1
/
2 ~ X(l) = (X(l)/,(l))'Y(l) 

~ IG : GIIG : D1 1
/

2 

::; (IG/GIID/Nj)1/2IG/DI 1
/

2 

::; IG/NI 1
/

2
. 
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Hence IG/GI = ID/NI. We may choose y E G with G/G = (Cy) and 

o(Cy) = o(Nx). By c.hoice of x, it follows that o(Ny) = o(N.?:) and GIN = 
G/N EB (Ny). Also (Nx,Ny) = (Nx) E9 (Ny). If y centralizes xi (i E Z), 

t'hen C(xi) ~ (G,y) = G and xi E Z(G) = N. Setting V = (N,x;y), it 

easily follows that N = Z(U). 

Let V = Ca(U) so that G/N = U/N x V/N by Corollary 1.7. Let 

1] E Irr (Vlcp).' Th~n XE Irr (GI17) and IC(17) = G because U ::; Cc(V). 

Since X vanishes off Nand 1J is the unique irreducible constituent of Xv, we 

see that 17 vanishes on V \ N. Certainly cp is V-invariant and so Proposition 

12.3 implies that cp is fully raIIlified with respect to V / N. By the inducti".e 

hypothesis,' V/N s:!: B E9 B for an abelian group ,B. Now G/N s:!: Am A· 

for an abelian group A, because G/N ~ V/N E9 (N;v)'E9 (Ny) and o(N3.:)~'. 
o(Ny). 0' 

If X E Irr (G) and X N E Irr (N) with N :S1 G, tl~en Gallagher's Theorem 

0.9 tells us f3 1---+ f3X is a bijection from Irr (G / N) ont6 Irr (Qlx N). Lemm~ 
0.10 strengthens this. Propositions 0.11 and 0.12,and Theorem 0.13 give suf­

ficient condi tions for a G~invariant cp E Irr (N) to extend to G. These results; 

will be used repeatedly throughout SectiOl~ 12, often without reference . 

,12.6 LelTIlTIa. Suppose tlJat G/N is abelian and <p E Irr (N) is G-invariant. 

Tl1en there exists a unique N ::; M ::; G SUell tlJat every , E lIT (111 lip ) 
extendscp and is fully ramified with respect to G/M. 

Proof. Vie first show uniqueness. If I( also satisfies the conclusion, then 

eachXE Irr (GI<p) vanishes off 111 n IC ~ut X M= r·, for an integer j 
and extension, of cp. Thus, vanishes off M n I(, yet, MnJ( is irreducible. 

Thus lvi ::; ]( a.nel by symmetry ]vI = I(. This establishes uniqueness. 

We now choose ]vI ::; G lilaximal such that <p has a G:..invariant extension 

() Elrr(lvI). Since Irr(NII<p) = {A(} I A E Irr(1vI/N)} and since G/N is 

abelia.n, every, E hI' (1\1Icp) is a G-invariant extension 6f <po Thus we need 

, jus t show th~,t eJ is fully rarnified wi th respect to G /111. Let X E Irr (G \eJ ) 



and let A1 ~ tr ~ G with U / M cyclic. By Proposition 12.3, it suffices to 

show that X vanishes on U \ M. 

Let (J E Irr (UIO") 'with Lx u,,8] :f O. Since U /1\1 is cyclic, ,8 extends (J. 

For 9 E G, (3g ~ a g{3 for a unique a g E Irr(U/IvI). Since G/M is abelian, 

agh = agahfor g, h~E G. Thus there is a subgroup'A ~ 1rr(U/10,;1) such 

that {a(3 I a E Irr(A)} is the set of G-conjugates of (3. By [Hu, V, 6.4]" 

A = Irr(U/I() for some subgroup I( with IvI ~. I( ~ U. Now (he is G- _ 

invariant and hence I( = 1\1 by the choice 0(1\1. Set P = LAElrr(U/M) A 

(the regular character of U / Iv!), so that XU = f p(J for an integer f. Since p 

vanishes off the identity (see [Is, Lemma 2.10]), X vanishes on U\N. 0 

12.7 P'roposition.' Assume tlwt G / N 9:! Q8' and A E In (N) is G-invariaJlt. 

Then A extends to G. 

Pr~of. By [Is, Theorem 11.28], we may assume that /\ is linear and fa,ithful, 

whence Iv ~ Z(G). S~tZ/N = Z(G/N). For x E G \ Z, x 2 E Z \ N, and 

Z ~ Co(x). Thus Z = Z( G). Pick y E G with [x, y] i- 1. By usual 

commutator identities, 1 = (x,y2] = [x,y][x,y]Y = (x,y]2. But (x,y] 1. N 

and so Z splits over N. Note [x, yJ = [nx, my] for n, Tn E N and so Z = 

N X U where U = ((x, V]) =:= ,Gt has order 2. Thus Aextends to A * E In (.Z) 

with U .~ ker A *. Now A * extends to G becanse G /U is abelian. 0 

In some ways, our main Theorem 12.9 generalize's the following result of 

Ito. 

12.8 Lelnm~. If G is p-solvable cmel p f XCI) for all X E Irr (G)J tl1en G'lJa,s 

a normal abelian Sylow-p-s ubgro up. 

Pi'oof.This is imnlediate from lIs, Theorem 12.33]. We also give a proof 

of t.his a~ld lTlore in Theorem 13.1. ' o 

12.9 Theorern. Suppose that N' .S:! G J 0 E lrr(N) a,wJ xpj;U~l) is ant,. 

number for all X E Irr (GIO) and a set 7f of primes. Assume that GIN is 

. solvable. Then GIN has an abelian Hall 7f-subgroup. In particular, GIN 

lws 7f -length at 1ll0S t Olle. 

Proof. By induction on IG/NI. The hYi)otheses imply that IG : 10(0)1 is 

7ft and s; Ic(O)/N contains a Hall 7f-subgroup of G/N. We may assume 

that G = 10(0). 

Let 1\1/N = 07r(G/N). If <p E Irr(MIO), then <p(I)/B(I) E 7ft 'and 

<p(1)/B(I) I IMINI· Thus each <p E Irr(MIO) extends O. In particular, 

if ). E Irr (M / N), then A<p E lrr (iVIIO) and A<P extends B. Thus A is linear 

and IvI / N is abelian. 

Suppose that N <1 Nl <1 G and 01 E Irr(N1 10). Then 01(1)/0(1) is 

7ft and x(l)IOl(1) is 7ft for all X E Irr(GIOl). The illdllctiv(! hypothesis 

implies that G / Nl and N Ii N have abelian Hall 7f-subgroups. In particular, 

w'e may assume that (j7r' (GIN) = G/N and 07r,(G/N) = 1. Since M/N = 

07r(G/N) is abelian and 07r,(G/N) = I, we have that IvI/N = C o/N(1I1/N) 

by Lemma 0.19. 

We may assume M < G and choose a maximal normal subgroup I( of 

G'with iVI:::; IC Since 07r'(G/N) = GIN and M/N = 07r(G/N), we have 

that I G / I( I ,= p for a prime p E 7f and that 1\1 < 1(. Since 1(/ N has an 

abelian Hall 7f~subgroup and IvI/N = Co/N(iVI/N), K/IvI is a 7f'-group and 

(G/1I1)t = I(/AII. 

We claiul that AlI/ N is a chief factor of G. If not, then whenever N < 
J < IvI with J ~ G, G/ J has an abelian Hall 7f-subgroup. Thus M/ J ~ 

Z(07r'(G/J)) = Z(G/J). In particular, I(/M centralizes 1I1/J whenever 

M I J is a' chief factor of G with N :::; 1. Since \1\1/ NI is 7f and 11(/ lvII is 7f t, 

this implies AlliN:::; Z(I(IN), a contradiction since 1\1/N = GO/N(1\1/N) l 
'aI~d IvI < IC Thus M/N = C o/N(1I1/N) is a chieffador of G and a faithful, 

irreducible G/M-:module. Since 1(/111 = (G/Ivly, in fact I(/N = (G/NY. 
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We have now established: 
\ 

Step 1. (a)MIN is an elementary abelian q-group for a l)rime q E 7f. 

(b) MIN is a faithful irreducible G/~1-module. 

(c) I{I1vI is a non-trivial7f/-group: 

Sec. 12 

(d) 1{IN = (GINy is the unique maximal normal subgroup of GIN. 
. \. -

(e) IGII(I = p for a prime p E 7f. 

St.ep 2. There is a G-invariantextension ()* E Irr (~1) of (). 

Proof. Since (II{IMI,IMINI) = 1 and Ig(()) = 1(, LemrnaO.17 (d) "yields 

t.he exist.ence of a I{-invariant. ()* E Irr(MI()). Since ()*(1)1()(1) is a 7f/­

number, and MIN is a "7f-group, ()* "extends (). The hypot.heses imply that. 

Ic(()*) contains a Hall 7f-subgroup of G. But 1(::; Ic(()*) and IGII(I =p E 7f. 

Thus ()* is G-invariant. 

Step 3. Let V = Irr (MIN). Then V is a faithful irreducible GIM-module. 
Fluthermore each A ~ V is eentrali£:ed by a. Sylow p-subgronp of GlJo.1. 

Proof. By' Step 1 (b) and Proposition 12.1, V is a faithful irreducible 

G/~1-moclule. Now A f---+ )J)* defines a bijection from V onto Irr(~11()). 

In' particular, Ic(.A()*) = Ic(.A) for all .A"E V. Th~ hypotheses imply that 

p t IG : IC(A()*)1 and hence p t IG : 1C(A)1 for all .A E V. 

Step 4. (a) V is not a quasi-primitive G/A1-nlOdule. 

(b) If 111::; A <J J( with A::;) G and ](IA a cyclic i-group for SOIne prime i, 

then t I lA/MI· ' 

Proof. First we prove (b). Assume that t t IA/~11. Also p t IAIMl: By 

Proposit.ion 0.17 (u), there exists f1 E In (Ale*) that is G-invariant .. Each 

Sylow subgroup of GI1.1 is cyclic, and so there exists {l* E Irr(GI{l) extend-

,ing {t.," Then ap,* E Irr(GjB*) for all a E'Irr(GIA). Thus pf a(l) for all 

(j' E Irr(GIA). By Uo's Theorem 12.8, GIA has a normal Sylow p,:sllbgroup, 
..... ".~ •. ",1;,.1;"" -.C' (f.! 1_-1')1 - Ttl.1 -* 1 rrhi~ nr()v~s (hI. 
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Now (GIM)' = ](IM. If V is q~asi-primitive, then Theorem 10.4 implies 

that 1(IM is cyclic.or that 1(IM ~ Q8 anu IG/KI = 3. By (b), 1(/1.II 1= 1 
is not cyclic. Now, by Proposition 12.7, ()* extends to K and hence to G. 

Again this implies that each a E ,Irr (G I M) has 3'-degree, contradicting 

Lemma 12.8. This prov~s (a). 

We have that the action of G I M on V satisfies the hypotheses of Theorem 

9.3 (proof below).. We lift the notation of that theorenl to GI1.I. 

Step 5. We have normal subgroups ~1::; G ::; L ::; I( ::; G such that 

(i) Ve = VI ED '" ED 11;1 for homogeneous component.s Vi of Ve, with 

jVi! = q11t (q prime as in Step 1). 

(ii) G IC ~ D6 , DID, or Ar(23), p = 2,2, or 3 (respective'ly), n = 3,5, 

or 8 (resp.), and 'GIG faithfully and primitively !)ermutes the Vi. 

(iii) LIG is the· unique minimal1l:0rma~ subgroup of GIG, ILIGI = n, 

and LIC transitively permutes theVi. 

(iv) CICe(Vi) tr'ansit.ively permutes Vi#, for each i .. 

(v) ~m -j:. 32 nor 34 .. 

Proof. Choose ~1 ::; G <J G maximal such that Ve is not homogeneous 

by Step 4 (a). Since (1(IM) = (GIM)I has index p in GIN!, we see that 

1vI ::; C ~ 1( ::; G and'p IIGICI. Writing Ve = V1 EB··· EB Vn for homoge­

neous components Vi of Ve and n > 1, Proposition 0.2 (i) applies and GIG 

fai~hfullyand primitively permutes {Vb"" Vn }. By Step 3, each A E V 

is centralized by a. Sylow p-subgroup. Theorem 9,3 applies to t.he action of 

Gill;] on V. Conclusions (i), (ii), (iii) and (iv) follow from Theorem 9.3. 

Note that ]( = L when p == 2, and that 11(ILI = 7 when p = 3. 

. Suppose that qm = 32 or 34
. By Lemma 9.2, q = 3 and so GIG ~ Ar(23 ). 

Since 7 f IGL(m,3)j, we have that 7 HCICc(Vd"l. Sin~e nCc(Vi) = Ai, it 

follows that7 does not. divide IC I Ml or IL/./\1I: This contradicts Step 4 (b), 

as G / L is a Frobenins group o~ order 21. This contradiction proves (v). ' 



(i) nCi = M. 

(ii) cj Pj and Fi/Cj are cyclic. 

(iii) FIM = F(CIJ..1). Also FIM and CIF are abelian of rank 

at most n. 

(iv) There exists' a prime 1'1 IFI1\1 I andR E Sylr(FI1\,~) such that 

r fIC/FI and F/M = CC/M(RIM). 

(v) If C > F, then F,= Ce(RIM) and?, f ILIFI. 

Proof. Part (i) is immediate because'V is a fai thful G I lv! and C 1M-module. 

Since q1l1 #- 32 'or 34 (Step 5 (v)), parts (ii), (iii) and (iv) follow from 

Corollary 9.7 and Lemma 9.8 (in case q1l1 = 26
, 2 E 7r and IC I Nfl 111USt 

be odd). 

For (v), we as'sume that C> F. By Lemnla 9.10 (b), Ce(CIF) ~ C. By 

(iv), F = Cc(RllvI) and so C e (RIlvl)nC = F. Thus Ce(RIM) centralizes 

elF a~ld so Ce(RIM) S; C, i.e. Ce(RIM) S; Cc(RIM) = F. So we need 

just prove r f ILl Fl· 

But we know l' f IC I Fl. ~urthermore ILICI is 3, 5, or 23 and p .= 2,2, or 

3 (re:';pcet~vely). Without loss of gcncralit.y, l' is 3,5, or 2 (resp.). Since l' is 

a Zsigmondy·prime divisor of q1l1 - I, we must have that 1TL is I, 2, or 4 (not 

, necessarily respectively). But exp( C / F)lm by Lemma 9.8 (b) and C IF#- 1. 

Hence m is.2 or 4 and C/ F is a 2-group. Since 171 > I, the Zsigmondy prime 

l' is 3 or 5 and thus p =' 2. This is a contr~diction as G IF is a 7r'-group. 

Step 7. If M S; T ~ Fwith T S! G and Cel/vI (T/1\1) i CI]vl, then TIM: is 

cyclic and T IlvI ~ Z(I( I A1). 

Proof.' That TIM is cyclic follows from Step 5 (v) and Corollary 9.9. Since 

1(11\1 = (GIM)', TIM S; Z(I(11\1). 

Step 8. '~uppose that M ::; T :s; F with T S! G arid T I A1 an s-gr~up for a 

prime s, s fiLl Fl. ,Assume there is a G-invariant extension 8 E In (T) of 

8*. Then s = 7 = 11(1 LL p = 3, TIN! S; Z(GIM) and TIM is cyclic. 

Proof. Now 0' 1--+ 0'8 defines a bijection from Irr(TllYl) onto Irr(TIB*). 

Since.8 is G-invariant, Ie(O') = Ie(O'8) for each 0' E Irr(TIlvI). Thu~ the 

hypotheses of the theorem imply that p fiG: Ie(O')1 for all 0' E Irr (TIM). 

First suppose that TIM :s; Z(LIJ..1). By Step 7,TIM is cyclic and central 

in I(IM. Since p f IG : Ie(O') I for all 0' E lIT (TIM), we see that GI I( acts on 

, T I lvI fixing all a. E hI' (TI M). Thus T 11\1 S; Z( G 11\1). Let T /1\1 S; Sj Al E 

Syls(F I lvI). Because s fiLl FI, Fitting's Lemma 0.6 implies that S I A1 = 
SdM x UIM where UllvI = [S,L] MIMand SdM = CsIM(LIF) ~ T/1I1. 

By Step 7, SdM ~ SjU iscyclic. Now 1 #- TIM S; Z(GjM).If.5 f IGISI, 

then SI I lv! S; Z( G 11\1) and S jU :s; Z( G jU). Also ?S( G 1]111) < G I AI, 

contradicting Step 1 (d). Hence s IIGIFI, but .5 f ILIPI. SO s IIG/I{I. 

Because p f II(11I1 I , certainly p #- s and so s III(ILI. Since I( = L when 

p == 2, the only possibility is p = 3 and s = 7 = 11(1 LI. The conclusion of 

this step is satisfied when TIM:S; Z(LIM). 

It suffices to show that T I lvI S; Z( L j M). Assume not. Since we have 

(ILIFI,ITjMD = 1, we may find a chief factor TolM of G with Tol1\1 i 
Z(LIM). Siilce 8 restricted to To is a G-invariant extension of B*, we may 

assume without loss of gelierality that T = To, i.e. T I lvI is a chief factor 

of G. Let B = Ce(TIlv!). S~nce.B does not contain L, we have that 

I(IM = (GIlv!)' i BllvI and TIM is not cyclic. By Step 7, it follows that 

F :s; B :s; C. 

Let .}( = hr (T I lvI). Then X is 8,n irreducible faithful G I B-module by 

Proposition 12.1. As in the first paragraph of this step, each X E X is 

cent'ralized by a Sylow p-subgroup of G j B. If p = 2, then s = 2 by Lemma 

9.2, contradicting Step 1 as p f II(j1\1 I· Thus p = 3, n = 8, and GIG ~ 
Ar(23

). Then GIC and 'GIB are not metacyclic, whence Theorem 10.4 

implies X is not a quasi-primitive GIB-module. Since OP'(GIB) = G/B, 
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Theorem 9.3 and Step 6 yield that 

rank(}{) = dim(X) 2 8 2 11, 2 rank (S/A1) 2 rank (T/M): 

Hence rank (X) = 8 = rank (T / Iv!) and IT / A11 = S8. 

Let Ti = Cr(Vi) = T'n C j . Since T/Ti ~ FdC j ) it follows from Step 6 

that T /Ti is cyclic and acts fixed-poInt-freely on Vi. Since rank (T / M) = B, 

we have that 
8 

T > Tl > Tl n T2 > ... > n Ti = M (12.1 ) 
i=l 

is a properly descending chain with eac~l factor group cyclic of order s. 

Now V = VI E9' . ·E9V8 and we choose 8 E V with 8 = (81, ... ,85 ,1, I, 1) with 

5}, ... ,55 non-principal. Now 3 t IG : 10(5)1 by Step 3 and C10(5)/C must 

stabilize {VlJ, ... , V5}' Thuslo(5)/lc(5) ~ Clo(5)/C has order3. Since­

s t IC/SI and s -=1= p = 3, we have 110(5)/ls(5)1 is not divisible by s. By 

Lemma 0.17 (d), there exists 5* E Irr(ls(5)15) that IS invariant in IG(5). 

Now 5 E V = Irr(M/N) and s t IM/NI. Thus 5 extends 'to Is(5). Since 

I s( 5)/ M S; S / M is abelian, indee'd 5* extends 5. 

Let 1= lr(5) S; Is(5). Since T/Ti ~ Fi/Ci acts fixed-point-fre<;ly on Vi, 

I = Tl n· .. n T5 • By the hypothesis of this step, , E hr (T) is a G-invaria~t 
extensio~ of 0* E Irr (M) (which in turn is a G-invari,?lIit extension of 0 E 

Irr (N)). In particular ,I and 5j ,I are I G( 5)-invariant extensions of 0* and 

50* (resp.). Since 1= TI n ... n Ts, it follows from (12.1) that II/A11 = s3, 

InTj (j = 6,7,8) are distinct subgroups of I and II : InTil = s (j = 6,7,8). 

Let f E Irr (1/ In T6 ) be faithful. Since e and 8* are linear, f5j,I extends 

50*, E Irr(A110). Since I = I r (5) = Tn 10(5)' ~ 10(5) = 10(50*), there -

exists P E Sy13(10(5)) such that f5j,I is P-invariant. Since P fixes ,I which 

extends 0\ it follows (see Lemma 0.9) that P fixes f5j. But 5* is invariant 

in Io(5) and 5A'1 is ir_reducible. Since P ::;10 (5), indeedE is P-i!lvariant. In 

particula.r, P fixes ker(€) = InT6 • But P E Sy13(Io(5)), and Io(5)C/C has 

order 3 and stabilizes {V1 , ••• ,V5}. Then PC/C = 10(8)C/C transitively 

perm(ltes {V61 V7 , Vs} and thus also tr'ansitively permutes {T6, T7 ) Ta} But 

P fixes T 6 , whence T6 = T7 = T8 • This contradiction completes Step 8. 

, elmp. 1 v PHli\'II~ utVISOltS OF Clli\J(i\CTElt lJt::l~IU:;I~S \(i!) 

Step 9. Suppose that VV/ All is a chief factor of G and an s-group for a prin:l.e " .­

s, s t IL/ Fl. Assume there is an L-invariant ,extension, E Irr (VV[8*). Then' 

I VV/1\IJ I = s =7, p =' 3, and vVjNJ ~ Z(I(jM). 

Proof. Now 0' I-t 0', is a bijection from Irr(W/A1) onto' Irr(l tVIO*). For 

9 E G, ,9 = ail' for a unique a g E Irr(1VjM) and 

By Step 8, we may assume that 1 is not G-invariant and hence L = I L( a) 

for somel =I- a E Irr (1V / 1\IJ). Since Pl/ AI is a chief factor of G, vV / AI :::;. 

Z(L/M). By Step 7, FI/AiJis cyclic of prime order s and lIV/~J :::; Z(I(/AlI). 

By Lemma 0.17 (d), there exists,1 E Irr(WIO*) that is invariant in a,,', 

Hall sf-subgroup H/]"1 of G/NI. NOW,l = 5, for a linear 5 E Irr(lVjA1). 

Since Wj:fo.iI S; Z(I(/M), certainly 8 and ,1 = 8, are L-invariant. Thus it is 

no loss to assume that, is LH -invariant., By Step 8 again, we may assume 

, is not G-invariant. Thus.'3 I IG / LI· Since s =I- p = IG': ](1 and since' ' 

]( = L when p = 2, indeed p = 3 and s = 11( : LI = 7. 

Step 10." Assume that S/lvI E Sy1s(FjA1) for aprime s, s tiL/Fl. Then 

one of the following holds: 

(i) 0* is fully ramified with respect to S/A!, or 

(ii) p = 3, s = 7, and S/M is cyclic. 

Proof. By Lemma 12.6, there exists M :::; H ::; S such that each (J' E 

Irr (HIO*) extends 0* and is fully ramified with respect to SI H. Also H ~ G 

because 8* is G-invariant. We ma.yassume H > A1. By Lemma 0~17 (d), 

there exists a.n L- invariant A E Irr ( SI 0 *). Now A is fully' ranlified with 

~espect to S/ Ii and the unique irreducible constituent ~ of AH is an L­

invariant extension of 0* to H. If A1 ::; W ::; H an~ vV ::S) G, then (J'W is an 

L-invariant extension of 0* to llV. Since H > M, Step 9 impli,es that p = 3 , 

and s = 7. 

Since HI Ai is abelian and centra.l in F/A1 and since it IL/F!, Fitting's. 



Lemma 0.6 implies that HIM = AIM x Aol fyf for !1, Ao :sl Gand Aj M = 

C J-l/!vf(Lj F). Suppose that Ao > J\{ and choose ,NI < vV ::; Ao with IIVI M a 

chief factor of G. Since O"w is,an L-invariant extension of 0*, Step 9 implies 

that Ttlf/~;f is cyclic and tVI Al ::; Z( 1(1 NI). Then W/~;f is centralized by 

L IF, a contradiction. Thus Ao = M and HIM is centralized by L IF. 

. Vve again apply Fitting'sLemma 0.6 to write SIl'vI ~ DIM x EINI witl~ 

D, E :sl G and,DIM = CsIM(LIF) ~ HIl'vl. By Step 7, DIM is cyclic. By 

the first paragraph of this step, we have 0" E hI' (If) and /\ E'!rr ($10") that 

are fully ramified with respect to SI H. By Lemma 12.4, 0" is fully ramified 

with respect to DIH. Since DIH is cyclic, in fact D = H by Lemma 12.5. 

Because H > Ai, rank (EllvI) = rank (SIM) -1 ::; 7 using Step 6 (iii). Now 

E/~1 ~ SIH has even rank by Lemma 12,.5, and so 2::; rank (ElM) ~ 6 

or E = 1\11. By Step 7, E = lvI or CGIM(E/~1) ::; GINI. By Lemma 9.12, 

E = ~1. Thus S = D = Hand S 1M is cyclic, completing this step. 

Step 11. If C > F, then p = 3 and G IF is a 2-group. 

ProoL By Step 6 (iv, v), there exist a prime l' and Sylow r-subgroup RI1\II 

of FIM such that FIA1 = CC/M(RIM) and r f ILIRI. Since (GIlvI)' = 

I(I1\;f > FINI, we see ,that RIM is n~t cyclic. By Step 10, fJ* is fully 

ramified with respect to RI1\1. Thus rank(R/~1),iseven, and by Step 6 

rank (RIM) .::; n. If]J = 2,' then Corollary 9.11 yields that rank (RIM} = n 

because G > F. For p = 2, n is odd, a contradiction. Hence p = 3 and 

n = 8. 

Pick l=/=XIFESyl(G/F) for some priule. By Lemlua 12.5 (b), rank(XIF) 

::; rank(RIM)/2::; 4. By Lemma 9~10 (c), XIF is a 2-group and thus so is 

GIF. 

Step 12. P = 2. 

Proof. Suppose then that ]J = 3. Let SjNI E Syh(FjlvJ). and TjM E 

Syh( G (A1). By the last paragraph, elF and hence L / Fare 2-groups. In 

particular, IT : SI = 7 = II( : LI· 

We 'clailll that no It E Irr (SlfJ) is T~invariant: For if /-t were T-invariant, 

then . Lemll~a 0.17 (d) guarantees the exis tence of 1] E 11'1' (L IlL) such that 1/ 

is invariant· in IC = LT. Since ry E hr(LI,O) and 3 f x(1) for all X E lIT (GlfJ), 

indeed ry is G-invarianL 'But G / L is non-abelian of order 21 and so 1] extends 

to ry* E Irr(GlfJ). But also there exists i7 E Irr(GIL) with d(l) = 3 and 

(117* E hI' (GlfJ), contradicting the hypotheses. Hence the claim holds. 

If fJ* is fully ramified with resped to 51 Ai, the unique irreducible con­

stituent of (fJ*)S is G-invariant, contradicting the last paragraph. By Step 

10) S/1\1 is·cyclic .. Since IC/Ai[ == (G/lv!)', 5/1\1 ::;Z(IC/M). In particular, 

TINI is abelian. If T/1\1 is cyclic, then 0* extends to ( E Irr(T). Then 

(5 E irr (SlfJ) is T -illvariant, contradicting the last pn.ragraph. So T / AI is 

abelian but not cyclic. 

SinceV'= lIT (Ai / N) is a faithful irreducible. G / lvI-module and 5/ Ai is' 

a cyclic normal subgroup of G/A1, CsIM(v) = ~ for all v EV#. Because 

T I A;f is abelian and not cyclic, it is not the case that CrIM( v) = 1 f~r all 

o =/= v 'E V. So we may choose A E hr (1\1/ N) such that I r( A) /1\1 has order 

s and IS(A)/~;J = 1. N~w Ir(AfJ*) = Ir(A) and (AfJ*)S E lIT (5IfJ), invariant 

in SIr(A) = T. This is a contradiction to the second paragraph of this step. 

Hence p =/= 3. 

Step 13. Let t E G with 1\1 t an invol~tion in G / M. Then t fixes exactly one 
- '1 1" V f tId 2m 12 . 21n Vj. Furthermoret le centra Izer III j 0 las or er 01. 

Proof. Now G/G ~ D6 0r D lo permutes Vl, ... ,Vn with n = 3 01'5 (re­

spectively). An involution in GIG fixes exactly one Vj and permutes the 

others in pairs. Now NG(Vj)/G has order 2. Sillce F = G by Step 11, G/Gj 

is cyclic of odd order. Since each v E. Vj is centralized- by an involution 

of NG(Vj) and since wemay assume that t E Nc(Vj) does not centralize 

Vj, we have that 02(Nc(Vj)IGj) = 1 and Nc(Vj)/Gj acts faithfully on Vj. 
Since N G(Vj) / Gj has a cyclic normal subgroup of odd order and index 2, 
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there is a Frobenius group H/Cj ~ Nc(V;)/Cj with Frobenius complement 

of order 2. Without loss of generality, t E H and Lemma 0.34 implies that 

the centralizer of.t in Vj has order IVjll/2 = 2m/2. 

Step 14. Conclusion.· 

Since p = 2, F '= C by' Step 11. We have that L= J( has index 2 in G, 

arid L/e regularly and transitively permutes {VI)"') Vn } (n:::;: 3 or 5). Let 

X = { (VI, V2, ... ,V 71 ) I all Vi are non-zero} .. Since F = C, the cyclic group 

C ICi acts fixed-point-freely on Vi· Thus Ic( 9') = n C j == M for all a E X 

and Ia(a)IM :s G/C ~ D2n . Since 2 IIIa(a)/1\11, Ic(a)/M ~ D2n or 

has order two. In either case, ciB* extends to la(a) = la(aB*). Since each 

, E Irr (Ic( a8*) I a8*) must have odd degree, each irreducible character of 

Ia(o:)/M ~ust also have odd degree because 0:8* extends t~ lc(a). Thus 

IIc(0')/1\III = 2 for all 0' EX., 

Now let Y = {(VI)""V n ) I exactly one:vi = OJ. Let {3 E Y so that 

Cla({3)/C has order 2. Without los~ of generality, (J = (0, V2,"" vn ) with 

Vi -; 0 for i > 1. Then Clo(fJ) = Nc(Vd and so Io(f3)/Ic((J) = Nc(Vd/C 

has order 2. Since C /Ci acts fixed-point-freely on Vi, lc((J) = C2 n ... ". n Cn, 

and lc(fJ)/J..1 is isomorphic:. to (L sllbgr(mp of the cyclic gronp C/C l . Thus all 

Sylow subgroups of I a((J)/ 1111 are cyclic. Thus {38* extends to an irreducible 

character of I c(f3) = I c({3B*). Since each 1] E Irr (GI{38*) has odd degree, 

every 6 E Irr(Ic({3)/1\I) has odd degree. Since IIc ({3)/C2 n .. · n Cnl = 2 

and C 2 n ... n C11 /1\II is cyclic of odd order, in [act Ia ((J)/1vI is cyclic. In 

particular, {3 is fixed by a unique Sylow 2-subgroup of C/ivI, and so is each 

element of Y. 

. Now Ic({3)/1\1 :s Nc(Vd/C1 in its action on VI. If Alt is the involution 

of lc({3)/1\I/, then the centralizer in VI of t is C2 n··· n Cn-invarial~t. Hence 

t centralizes VIOl' C2 n ... n Gil does not act irreducibly on VI. 

Assume for this paragrai)h that C2 n '" n Cn = AI. Consequent.ly,the 

inters~ction of any (n - 1) distinct C j is AI. Set Z = {(VI,' .. , V n ) I exactly 
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two Vi are zero}. Let I E Z,say I = (0,0, va, .. ·, v n ). ,Then Ic(,)/l1([ = 

G3 n···nCn /M:S G/G2 and Ic(,)/lIf'is cyclic. We argue as in the second 

paragraph of this step to show that I a( ,)/ AI contains a unique involuticm. 

If C2 n· .. n C n = 1\1, then each element of Z is fixed by a unique involution 

of G/A1. 

Now Mt is an involution of G/M stabilizing V1 and pennutiIlg the other, 

Vi in pairs. Let 21 = Ie VL (t),,"so that I = nt or I = m/2 bJ' Step 13, recalling. 

IV1 1 = 2m. Observe that t centralizes (21 -1)(2m _1)(11-1)/2 elements of X,' 

(2m _1)(n-l)/2 elements of Y and (21 -1)(2m _1)(n-3)/2(n -1)/2 elements 

of Z (of course n is 3 or 5). A Sylow 2-subgroup of G / M has order 2 and 

, all involutions of G / 111. are conjugate. The first and second paragraphs of 

I this step show that each element of X U Y is fixed by a ~nique involution of 

G/M. Thus 

(12.2) : 

and 

(12.3) , 

Now (12.2) and (12.3) yield,that 2m - 1 = n(21 - 1) and I -; m. Thus 

I = m/2 by Step 13 and n = 2m
/

2 + 1. By (12.2), we now have 

n = 3, IVI! = 22, J = 1, Ic/cd = 3, and ISyb(G)1 = 9 

or 

If, in addition, C2 n ... n Cn = M, the last paragraph implies that each; 

·element of Z is centralized by a 'unique involution, wh~~ce 

(21 - 1)(2m - 1)(n-3)/2(ri - 1)ISyb(G/1\1)1 =,2IZI = n(n - 1)(2m _1)~-2 . 

and (2' - 1) ISy12( G / !vI) I = n(2m _1)(71-1 )/2. For n = 5, this is a contradic­

tion. Hence C2 n ... n Cn > 111 whe~ n = 5. 
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Suppose that n '= 5. Now 1 i- (G2 n· " n Gs)11111 :s G IG I in its action on 

,VI. Since lYl t does not centralize Vi, the third paragraph of this st~p implies 
" , 

that (C2 n . ~ . n C5)/M does not act 'irreducibly on VI' Since IC IGd = 15 

and IVI! = 2~, it follows that I(G2 n ". n G5 )llvll ~ 3.' By conjugation, 

IH I 1\111 = 3 whenever H is the intersection of any four distinct Ci . But a 

Sylow 3-subgroup TIM of C I M is elementary abeli~ of order at most 35 

(see Step 6 (iii)),' Thus ITIMI = 35
. Since TI1IIl E Sy13(GIM), f}* is fully 

raInified wi th respect to TIM by Step 10. Hence rank (T / 1111) is even by 

Lemma 12.5. By thi~ cont~acliction, 7~ == 3. 

Since ICICd = 3 = 11(ICI, we hav~ that 1(11\11 is a 3-group of order 

at most 34 , By Step 4, 1(IM is not cyclic. If JIlvI= (1(IM)', then 

1(IJ is not cyclic, Because 02'(GIM) =.GIM and ISyh(GI1\II) I = 32
, 

it follows that G11( acts fixed-point-freely on 1(IJ and 11(IJI = 32
• Fur­

thermore J / A1 must be centralized by a Sylow 2-subgroup of G I 1111 . Since 

0 2
' (GIM) = GIM, in fact JIlvl = Z(GIM). Since exp(GIM) = 3, Step 7 

yields that IJ111([1 = 3. Now JIM ~,GI1IIl rriust act on VI non-trivially. In 

particular, CG(V1)J ICG(VI ) is isomorphic to JIM and is a central subgroup 

ofNG(Vd/CG(Vd· Since NG(V1)/CG(VI ) :s S3, in fact NGCV1)/Cc(V1 ) 

has order 3. Thus M t centralizes VI' This final contradiction completes the 

proof of the theorem, 0 

The motivation for Theorem 12.9 is'the next theorem, Brauer's height­

zero conjecture for solvable groups. Recall that this conject:urestates that a 

defect group D of a p-block B is abelian if and only if every X E Irr(B) has 

height zero, If D is abelian and Gis p-solvable, then Fong [Fo 1] proved that 

every X E Irr(B) has height zero via "Fong reduction". Indeed the proof 

below in this direction works just as well for p-solvable. For the converse 

direction the proof is Theorem 12,9 and Fong redudion(below). Foilg, 

proved the, converse direction for the principal block B (via Fong reduction 

and Ito's Theorem 12.8} or when p is the largest prime divisor of G [Fo 2]. 
We me~1tion that Theorem 12.10 extends to p-solvable G (see [GW 2]). 

12.10 Th'eorenl-~ Let D be a defed of a p-block B of a solvabl~ group G. 
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Then every X E Irr (B) l1as height ~ero if and only if D is abelian. 

Proof. By i~ductior: on IG : Op,(G)I. Let'I( =Opl(G) and choose 'f E 

Irr(I() such that B covers {<p}. Let 1 = 1G (<p), By Lemma 0.25,there 

exists a. block b of 1 such that character induction is a height-preserving 

bijection from Irr ( b) onto Irr (B). Furthermore band B share a common 

,defect group Dl ~D. 

Now every'1p EIrr(b) has height zero if and only if exery X E Irr(B) has 

height.'zero. If 1 < G, the inductive hypothesis implies that every 'IjJ E In (b) 

has height zero if and only if D is abelian. The result then follows easily. 

Hen~e we assume that G = 1 c( <P ). 

By Theorem 0.28, In: (B) = hr (GI<p), and the defect gI'OUpS of Bare 

Sylow p-subgroups of G. If each X E Irr (B) has height zero, then p f x(1) 
for all X E Irf (GI<p). By Theorem 12.9, G has abelian Sylow p-subgn~ups, 

i.e. the defect groups of B 'are abelian. To prove the converse, now assume 

G has abelian Sylow p-subgroups. We show p f ,8(1) for all ,8 E Irr (GI<p). 

Let lvIl1( =Op'p(GII(). By Lemma 0.19, MII( ~ CG/K(A111n. Since 

'D E Sylp (G) is abelian, 1( D I 1( c~ntralizes 11111 I{, Thus M = 1( D. Since <p 

is M-invariant, <P extends to<f E Irr(A1) by Theorem 0.13. Since D ~ A1II( 

is abelian, every 1] E Irr(MI<p) extends <po In particular p t 1](1) for all 1] E 

Irr(l\III<p)· Since GIJv.l is a p'-group, P1 x(1) for al~ X E Irr(GI<p), 0 

One can ask a number of questions related to the theorems in this section. 

For example, 'if f} E Irr(H) with N :s! G and pe+l f x(l)If}(l) ,for all X E 

Irr(GIB), can we give a bound for dl(P) where P E Sylp(GIN)? The answer 

is yes, namely 2e + 1. We refer the reader to Corollary 14.7 (a) for a proof. 

Consequently' one can bound the derived length of a defect group of a block 

B of a p-solvablegroup in terms the maximum height in Irr (B). By the 

way, there is no generalization of the converse of Brauer's height conjecture, 

since it is easy to find p-groups of derived length two that have ar:bitrarily 

large degrees of irreducible characters. 



176 MODULAR ITO-TYPE TIlEOREMS Sec. 13 

Similar questions about Brauer characters may also be ask~d. But an­

other twist may be add~d, since we can discuss the situation where q 1 <.p(1) 

for all c.p in some subset of IBrp( G) in the two ~ases, q = p and q f=. p. In 

Section 13, we discuss and prove analogues of Ito's Theorem for both p = q 

and p f=. q. In Section 14, we show there is no analogue of Theorem 12.9 

for Brauer characters when p = q (i.e. {q} = 7f), but clo give a result when 

p f=. q and some generalizations. 

§13 Brauer Characters of q'-degree and Ito's Theorelll 

In this section, we investigate the set of p,.Brauer characters IBrp( G). If 

G is a p'-group, we shall freely use the existence of the natural bijection 

Irr(G) -4 IBrp(G) (see Lemma 0.31). For example, if A is an abelian p'­

group and H acts on A, the~ H acts faithfully (irreducibly, resp.) on A if 

and only if H acts faithfully (irreducibly, resp.) on IBrp(A) by Proposition 

12.1. 

13.1 Theorelll (Ito). Let p be a prime and P E Sylp(G). 

(a) If P ~ G and pI = 1, then p f x(1) for all X E Irr(G). 

(b) If P ~ G, then p f ,6(1) for all,6 E IBrp(G). 

(c) If G is p-solvable, tJlell the convel:ses of (a) and (b) also hold. 

Proof. (a) By [Is, 6.15], X(I) IIG / PI and the conclusion hqlds. 

(b) Recall that Ope G) is contained in the kernel of each p-moclular ir­

reducible representation (see Proposition 0.20). Thus ,6 can beconsidered 

as an element of IBtp( G / P) and hence in Irr (G / P). Therefore, (b) follows 

from (a). 

(c) We fi~st show in both cases that P ~ Go Let M be a minimal normal 

subgroup of G. By induction on IGI,G/l\l[ has a normal Sylow p-subgroup 

Nj]v[ =t MPjM. We may asslime that N = G and also that p 1.IMI, since. 

otherwise G would have a normal Sylow 1;-s1.lbgroup. The hypotheses imply 
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that I G( <.p ) G for all <.p E Irr (M), i.e. Pacts 'trivially C?D, Irr(M). By 

Lemma 12.2, P :::; CG(1\1f) and thus P ~ G. For the converse of (a), note 

that Clifford 'sTheorenl implies that p t 1p(1) for all 'IjJ E Irr (P). : Since 

~(1) IIPI, we have that lP is linear and P is abelian: 0 

Part (c) a.bove is not the full truth, namely the hypothesis "p-solvable" is 

~uperfluous, as Michler [Mi 1,2] and Okuyama [Ok 1] showed. T.his depends 

on the classification of finite simple groups and we comment on the proof at 

the end of this section. 

Theorem 13.1 provokes the following question: What can be said about 

G if there exists a prime q f=. p s1£ch that q t ,6(1) fOT all f3 E IBrp( G) ? 

For solvable G,' we show that the q-length lq( G) of G is at lTIOSt 2 and 

Ip(Oq'(G)):::; 3. These r'esults rely on Sections 9 and 10. 

13.2 Exalllple. Let p and 7' be distinct primes, and let q be a prime 

and bEN such that q 1 r qb - 1. We consider H ~ Af(rqb ), where the 

field automorphisms in II only consist of a group of order qj hence IHI = 

r qb . q. (r qb - 1). Since IHjH'1 == q(rb - I), we may take G ~ H of order 

IGI = rqb .' q . (1,qb - l)/(T b - 1). Now Af(rqb) transitively permutes the 

non-principal charaders of IBrp( Af( r qb )). The inertia group in Af( r qb ) of 

1 =f. A E IBfp(A(1,qb)) has index rqb - 1. Since A(rqb) $ G ~ H ~ Af(r qb ), 

q f IG : Ic(A)I· Assume now in addition that (r qb -l)/(rb -1) = pfl for some 

a E N. Then all j3 E IBr p( G) have degr.ee 1 or pa j in particular, q f ,6(1) for 

all ,6. 

Observe that q = r is not forbidden. In this case, G has q-length 2. 

Small examples a.re Af(22) ~ S4 with P = :3 and q = 2 = r, El:nd Af(23 ) 

with P = 7,q = 3 a.ndr = 2. 

As in Section 12, the primes q = 2 and 3 require some extra considerations. 

13.3 Lenl1na. Let p be an odd prime alld. assume that 2 f ,6(1) for all 

j3 E IBrp(G). If0 2'(G) is solva.ble, then 02'(G) is a {2,p}-gToup. 
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Proof. tVe argue via induction on IGI, and may thus assume that G = 

Oi (G). Let M be a:minimal normal subgroup ofG~ ThenC/Mis 'a {2,p}­

group and(/M/, 2p) ~ l. We may also q,ssume that M is the unique minimal 

normal s'ubgroup of C. Therefore A!f'= Cc(A!f), because (INII, IC/AII) = l. 

We consider the faithful alH1 irreducible action of G/M on IBrp(M). By 

our hypotheses, 2 f IG : 10(A)1 for all A E IBrp(A!f) and Lemma 9.2 yields 

char(M) = 2, a 'contradiction. 0 

Next is an ip'~~'nediate consequence of Theorem 9.3. 

13.4 Lenuna. Suppose tllat C = 0 21 
(C) is a {2,1J}-group for al~ odd prime 

p. Assume that G acts faithfully and irreducibly on a finite vector spac~ V 

in sucl] a way that 2 fiG: Cc(v)1 for all v E V.If there exists e S; G SUcll 

that e is maxim,al with respect to e :S! G and Vc nOll-lwlnogeneous, tlJen 

(i)' G /e ~ D6 and'p = 3; 

(ii) Vc = VI EB V2 EB V3 for homogeneous components Vi that are faithfully 

permuted by G/G; 

(iii) IViI = 22 and e acts transitively on Vi#; and 

(iv) There is a non-zero ve'ctor x E V such that C c ( v) has a normal 

2-complement. 

Proof. Since 02(G/G) < 'G/G, it follows from Proposition 0.2 and Theo­

rem !j.3 that GIG ~ D 2n for n = 3 or 5', and that Vc,= VI ED··· EB Yrt for 

homogeneous components Vi that are faithfully and primitively permuted 

by G /G. Also, G acts transitively on Vi#. By Lemma 9.2, char(V) = 2, 

say IVil = 2a for some a 2 2. Since Gis a'{2,p}-group, we conclude that 

2 U -1 = pb for some integer b. As the {2,p}-group GIG ~ D 2n transitively 

permutes the Vi, it follows that 11. = P = 3 and the'refote 3 = ]J = 20. - 1 (cf. 

Proposition 3.1). Thus IVi! = 22 and (i)-(iii) have been proved. 

To establish (iv), let x 
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ICc(x)G lei = ICo(x )/Cc(x )1. As 

3 

CC(x) :s'n c ICc(Vi) :S'S3 x S3 X S3, 
i=l 

, I 

C c ( x) has a normal 2-complement. o 

13.5 Proposition. Let A!f be a minimal Ilormal subgroup of a solvable 

group G, let D = Co(1\I) and]J be an odd prime. Suppose that 0
21 

(G) = _ 
G,]J f IMI a.nd 2 t fJ(l) for all fJ E IBrp(G). Theil l2(G/D)S; 1 a.nd 

lp(G/D) S; 1. 

Proof. We set V = IBrJl( A!f) anel may clearly assume tha.t D < G a.lld 

IG/DI is even. By our hypotheses, we have that 2 f IG : Cc(v)1 for all 

v E; V,- (1.11(1 tha.t V is a,fn.it.hflll aIHI irredllci1>le G I D-lUOclllk. If V is ql1flsi­

primitive, it is immediate from Theorem 10.4 that the assertions hold. 

,We may thus assume that V is not quasi-primitive, and by Lemma 13.3, G 

is a {2, p }~gro'up. Applying Lemma 13.4, we obtain that p = 3, char(V) = 2 

and there exists /\ E V such that. Co(A)/ D l1asa normal 2-complement 

L/ D. Set I = Co(A) and choose a E 1Br3(II/\). Since a O E 1Bra(G), our 

hypotheses imply that 2 t a C (1) = d(l)·IG: II. Therefore IlL is isomorphic 

to a'Sylow 2-subgroup of G I D ,and a L is irreducible. Thus al" E 1Br3(II/\) 

for all f.1 E 1Br3(I/L) (see Lemma 0.9). Now af.1 in the role of a yields that 

2f(af.1)(1) and f.1(1) == 1, because I/Lis a2-group. Consequently, I/L and 

the Sylow 2-subgroups of G / D are abelian. By Lemma 0,19, l2( G I D) ~ 1. 

It remains to show that l3( G / D) S; 1. By Lemma 13.4, there exists 

G ~ G such that GIG ~ 53 and G / D :s S3 X S3 X 53. Consequently, 

there exists a series D S; B S; G S; G of normal subgroups of G such that 

B/D is a 3-group and GIB a2-group. If0 3(GID) = BID, then GIB 

has a normal Sylow 2:-subgronp, because 12( GID) = 1. This contradicts 

G/G ~ S3', Therefore, GID has a normal Sylow 3-subgroup and the proof 

is complete. 0 
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After these preparati~ns for the prime q = 2; we turn to the other "crit­

ical" prime q = 3. , 

13.6 Lemlna. Let p be a prime distinct from 3. Assume tl1at G = 0 3 ' (G) 

is a solvable gTOUp that acts faitllfully and irreducibly on a finite vector 

space V. Suppose tllat3 t IG : Ce(v)1 for all v E V, and tlwt 31.8(1) for 

all (3 E IBrp( G). If V is not quasi-primitive, then tile following assertions 

lwld: 

(i) p = 7 and 17( G) ::; 2; 

(ii) 13(G) = 1; and 

(iii) There exists x .E V# sudl that 21.10 :Cc(x )1. 

Proof. Choose G maximal with respect to G S! G ,and Ve non-homogeneous. 

Since 311GIGI, but 3 t IG: Cc(v)1 for all v E V, it follows from Proposition 

0.2 and Theorem 9.3 that GIG ~ Af(23
) an9 that Vc = VI EEl··· EB V8 for 

homogeneous components Vi which are primitively and faithfully permuted 

by GIG. Furthermore, G acts transitively on each Vi#. As Af(23 ) has 

a factor group isomorphic to the Frobenius group F21 of order 3 . 7, the 

hypothesis about Brauer characters applied to F21 'implies that p = 7; It 

n.l~o follows, from Huppcrt's Theorem '6.8 that either C is metabe,lian or 

7 t ICI· Consequently, /7(.G) ::; 1 and 17( G) ::; 2, proving (i). 

Remember that G IC ~ Af(23
) ha.s a unique·chief series G < L < I( < G, 

whe~e ILICI = 23
, II{ILI = 7 and IGII(I = 3. Also note that 03(G) '::; 

,Ce(V) and thus 03(G) = 1. If 7 t ICI, then the condition on Brauer 

characters implies that every p E' hr (C) has 3' -degree. Since ° 3 (C) = 

03(G) = 1, Theorem 13.1 yields that 311CI. Thus, to prove (ii), we may 

assume that 7 I IGI· By the first paragraph, C is metabelian. Set X = 
0 3, (e). Then G I X is an abelian 3-group. We show that I( Ie centralizes 

C I X. If not, then there is' a chief factor C I D of G such that' I( lei. 
co/c(e/D), because 3 t I}(/CI· Set TiV = IBrp(CID). Then T'V is an 

irreducible G-module, and the hyp.othesis about Bra.uer characters implies 

that 3 f IG : CeC).)1 for all ). E lV. Suppose that GIG acts fa.ithfully on 
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, TV., Then TVL is homogeneous (by Theorem 9.3) and thus L/C is cyclic. 

This contradiction shows that C.c(W) ='L. Now G /L ~ F21 and so each 

). E VV# 'is fixed by exactly one of seven Sylow 3,-subgroups of GIL. Let 

R E Syl3(GIL), and set IWI = 3a and ICw(R)1 = 3b• Counting yields 

3
a 
-1 = IVVI-1 = ISyh(GIL)I'(ICw(R)I- 1) = 7· (36 -1). 

In pClrticular, bl a ~nd we obtain 7 = (3b)(a/6)~1+ ... +3b+1, a contradiction." . 

Thus]{IC::; Ce/c(CIX). So G has a normal 3-complement and assertion 

(ii) follows, 

To prove (iii), consider x = (Xl, 0, ... 0) E V with XJ E V/f., Siuec LIC 
regularly permutes the Vi', certainly ,2jlG : C e( x)1 holds.' 0 

, , , 

Before we reach the main results of this section, we observe, fhe following 

fact. 

13.7 Lenl1na. Suppose that q 1 (3(1) for all f3 E IBrp(G), where q f:. p. If 

M S! N S! G such that N (All is a q-group, then N I M is 'abelian. 

Proof. By Clifford's Theorem and since p f INIMI, we ha.ve that q f !.p(1) 

for all tp E Irr(NIM). But tp(l) IINIAII for all such 'P. So tp(l} = 1 and 

N I AI is abelian. o 

13.8 Theorem. ' Let p, q be distinct primes. Assume that oq' (G) is solvable 

and that q 1 (3(1) for all f3 E IBrp( G). Then 

(1) 'In ead] q~series of G, the q-factors are abelian; and 

(2) lq( G IOp,qJ G)) :::; 1. 

In particular, a Sylow q-subgroup of G is metabelian. 

Proof. Since assertion (1) immediately follows from Lemma 13.7, it remains 

to prove assertion (2). As Op,q(oq' (0)) ::; 0Jl,q(G), \ve may assuine t.hat 

G = oq' (G). Vole may also assume that O:,CG) = ,. It tlmc c,,+r-:~,,- L.. 



~ I • '. t I ~ i . \ I' I . I -..: J • 1 

that lq(CjF(C» ~ 1. By Gaschiitz's Theorem 1.12, F(G)/~(C) = VI EB 

... ED Vn is a faithful completely recllicible G jF( G)-module with irreducible 

constituents Vi. Set Ci = Cc(Vi ) and TVi = IBrp(Vi). Since char (Vi) i= P 
for all i, the vVj are faithful and irreducible C I C\-modules. Oui- hypothesis 

abQut the degrees of Brauer characters implies that q f IG : Ca(.Ai)1 for all 

.A i E Hli , i = 1, ... , n. 

If Wj is 'quasi-primitive, then Theorem 10.4 immediately yields that 

Z;( G / Cj ) ~ 1. If however TV; is not quasi-primitive, then q = 2 or 3, by The­

orem 9.3. In the first case, it follows from ,Proposition 13.5 (with Vj iI~ the 

role of A1) Cll:cl in the second case frorn Lemma 13.6 tl{at l~( C ICj ) ::; l. Since 

ni Ci = F(C), we have shown that Iq(CjF(C)::; 1, as, desired. 0 

We next bound the p-Iength of og' (G) under the hypotheses of Theorem 

13.8. 

13.9 Theoreln. Let p, q be distinct primes, let N = Oql (C) be solvable 

and assu;lJe tlwt q 1 ,B(1) for all ,B E IBrp(G). Then 

(1) l p ( N /0 p ( N») ::; 1, or 

(2) lp(NIOp(N»'= 2 and (p, q) = (7,3). III this case, there exists 

p E IBr7(G) witl~ p(l) even. 

Proof. We may assume that C = Nand Op( G) = l.We agaiI~ write 

F( C)j1l( C)= VI ED· .. ED Vn with irreducible 'G-modulesVi , set Cj = Ca(Vi ) 

and VVi = IBrp(Vi ), and observe that q t IC : Ca(.Adl for all .Ai E TVi, 

i = 1, ... ,n. 

If TVj is quasi-primitive, then lp(C/Cj) ::; 1 by Theorem 10.4. Otherwise, 

Theorem 9.3 yields q = 2 or 3. It follows from Proposition 13.5 and Lemma 

13.6 that lp( G j Cj) S; 1 in the first case, and that p = 7 and 17( G j C j ) S; 2 in 

the second case. Since ni Cj = F( G) and p f IF( G)I, we obtain [p( G) ~ 1) 

or ll'( G) :S 2 and (P, q) = (7,3), as' required. ' 

, I 

VVe still have to prove the existence of the character p in the:, exceptional 

case (2). By the pi-evious paragraph, we may assume that TV} is not quasi­

primitive. Applying'Lemma 13.6 (iii), there then exists.A E ltV} such that 

2 IIC : Ja(.A)I· For p we llla.y thus choose allY element of 1Br7( CIA). 0 

13.10 Corollary. Assume that G is solvable and ,8(1) is a p-powe~ for all 

,B E IBrp(C). TlJen OP(C)jOp(OJl(C» has p~lengtll at most 1. 

Proof. Without loss of generality, Ope C) = l. Set I( = TIg~p Oq' (C) = 
,OP(C). It follows from Theorem 13.9 that lp(Oq'(G)) ~ 1 for each q (the 

exceptional case with (p, q) = (7,3) is ruled out by the existence of p E· 

1rr( 0 g' ( C)) of even degree). Thus 1 p (In ::; 1. 0 

Example 13.2 shows that the assertion of Theorem 13.8 is best possible. 

Under certain circumstances howev~r we have a statement analogous to 

Theorem 13.1 (c), as we shall see next in Theoreln 13.12. 

13.11 Lelnma. Let p, q be distinct primes and assume tila.t the solvable 

group G = Oql (G) =f. 1 acts faithfully and irreducibly all a finite vector 

space V. Suppose that q t IC : Ca(v)1 for all v E V and q t ,8(1) for all 

,8 E IBrp( C). Then q I p - 1 or (p, q) = (2,3). 

Proof. Suppose that V is quasi-primitive. We may assume by Theorem 

10.4 that N := og( C) is cyclic. Now p 1 IC /Op(N)1 and thus each 0' E 

Irr(CjOp(N)) has q'-degree. By Theorem 13.1, and the hypothesis that 

og' (C) = C, ,it follows that G/Op(N) is a q~group. Then N is a cyclic 

p-group. Since 'Og( C) = 1, we obtain q I p - 1. 

Suppose secOIldly that V is not quasi-primitive. By Theorem 9.3, we 

have that q ~ 2, or q = 3 and C has a factor group isomorphic to Ar(23 ). 

If q ~ 2, then p is odd and the assertion trivially holds. Since Af(2 3 ) has a 

, factor group isomorphic to the Frobenius group of order 3·7, the hypothesis 

al,)out Brauer characters forces p =' 7 and again q /'p - 1. 0 

-I 
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, , 

13.12 TheorelTI. Let p, q be distinct p'rimes, let ,O~' (G) be solvable a~d 
assume tl]at q f ,8(1) for all ,8 E IBrp(G). If q t p ~ 1 and (p, q) #- (2,3), tllen 

G 10p( G) lla.5 a normal abelian Sylowq-subgroup. 

Proof. Vie may again assume that G = oq' (G) and Op(G) = 1. By 

Lemma 13.7 it is enough to show that G "= F(G). To do so, we write 

F(G)/1>(G) = VIED' ··EDVn with irreducible G-modules Vi, set C i = CC(Vi ) 

and TVi = IBrp(Vi), and observe that our hypotheses imply q t IG : CC(Ai)1 

for all AiE Wi) i = 1, ... ) n. Since q t p - 1 and (p"q) #- (2,3), ,it follows 

from Lemma 13.11 that GICj = 1 for all j = 1, ... ,no Now nj Cj = F(G) 

and we get G IF( G) = 1) a.s required. 

13.13 Renlarks. (a) (Michler, Okuya.ma) ,Let p be a prime and 

p E Sylp(G). 

(i) If pt x(1) for all X,E lrr(G), then P ~ G an'd pI = 1. 

(ii) If p t ,8(1) for.all,8 E IBrp(G), then P ~ G. 

o 

To prove (i) or (ii), it suffices to show that P :s! G~ To this end, one may 

repeat the arguments of Theorem 13.1 (c) to conclude that G has a minirnal ' 

norma.l subgroup lvI, that A1 is non-solvable and p I IA11. In particular, 

M = Ex· .. x E for a non-abelian simple group E such that pilEI. One 

then wishes to obtain contradictions by showing the existence of X E Irr(E) 

and I]' E IBrp(E) with p 1 x(1) and p 111(1). 'This can be done with the help 

of the classification of simple grotlps;' although Okuyama [Ok 1] has given. a 
, , . 

direct proof that a simple non-abelian group has a Brauer character of even 

degree. For p odd, Michler [Mi 2] has shown that the simple group E has 

a block. B that is not of maximal defect, i.e. a defeCt group is not a Sylow 

p-subgroup. Then the degree of every X E Irr(B) U IBrTJ(B) is divisible by p 

(see Lemma 0.24). 

(b) Does Theorem 13.8 also all.ow an extension to arbitra.ry finite groups 

G? CI~ar1Yl it makes no sense to speak about the q-Iength of G any longer. 

But we may a.sk the following question: 
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Let p, q be distinct primes and suppose that q f /3(1) for all fJ E IBrp(G). 

Is Q metabelian for Q E Sylq( G)? 

If so, it would be best :possible. The solvable group S4 has, a dihedral 

Sylow 2-subgroup and satisfies these hypotheses with q= 2, p = 3 (see 

Example 13.2). To see a non-solvable example, we mention that ,the p-Brauer 
/c , 

charact'er degrees of PSL(2, p) are {I, 3,5, ... ,p}, but a Sylow 2-subgroup 

of PSL (2, p) is dihedral (see [HB, VII, 3.10] and [Hu, II, 8.10, (b)]). 

It Was mentioned in §12 that Theorem 12.9 remains valid for p-solvable 

groups, depending on the classification of finite simple groups., One of the 

facts needed is the following. 

13.14 Theorenl. If p t lEI for a simple non-abelian group E, then Out (E) 

has a cyclic and central Sylow p-subgroup. 

Proof. See [GW 2, Lemma 1.3). o 

Also Theorem 13.8 extends to p-solvable groups. As the arguments are 

inu~h easier than those needed to extend Theorem 12.9, we present a proof. 

13.15 Corollary. Let p, q be distinct primes, and assume tlJat G is p­

solvable. Ifq t ,8(1) for all,8 E IBrp(G), the~ oq'(G) is solvable. In 

particular, the assertions of T1Jeorems 13.8 and 13.9 apply. 

Proof. We assume without loss ofg~nerality that ~ = oq' (G) and Op( G) 

= 1. Choose a' non-solvable chief factor MIN of G with IMI as large as 

possible. Thus GIM is solvable. Since p f 11\1INI, the hypothesis about 

Brauer degrees implies that qt x(1) for all X E Irr(A.1IN), and 13.13 (a) 

yields q f IM/ N/. Since G = Oq' (G),. it follO\ys that M < G, and by the 

maximality of M, GIM is isomorphic to subgroup of Out (lvIIN). Suppose 

at first that All I N is simple. Then Theorem 13.14 implies tha.t G 11\1 is a q_ 

group. By our 'hypotheses, every irreducible Bra.uer and ordinary chanicter 
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of A11N is invariant in G. Hence Q E Sylq(GIN) centralizes lvf/N by 

Lemm~ 12.2. This contradicts G = Oql (G). 

We may now assume that AI IN is not simple~ Then G induces a 110n­

trivial transitive permutation group on the simple components of MIN. We 

may writelvIIN = 5 1 x··· X 5 n with n > 1 isomorphic non-solvable groups 

5j that are primitively pennuted by G. Let C ~ Gbe the kernel of this per:' ' 

mutation action, and fix 1 of aj E Irr'(5i},'i = 1, ... , n. For 6. ~ {I, ... , n}, 

consider I1iELl OOj E Irr(lvI/N). Since this t;haracter must be invariant uJ?-der 

some Q E Sylq(G), we conclude that 1 of QCI9 E Sylq(G/C) stabilizes 6.. 

As G I C: is 'solvable, it follows from Corollary 5.8 that G leis isomorphic 

toD6, D IO or Af(23 ), n = 3, 5 or 8 (resp.) and q = 2, 2 or 3 (resp.). 

We now 'choose QoE Sylq( G) that stabilizes al ... (}' q E Irr (lvI IN). ' Since 

Qo transitively permutes {51,"" Sq} I it follows'that al (1) = ... = a q(I). 
Consequently, 51 has at most two distinct ordinary character degrees. This 

however forces, 51 to be solvable (see [i~, Theorem 12.5]), a contradic-

tion. o 

Most of tl~'e material of this section,appeared in [MW 1]. Corollary 13.10 

has been proved by R. Gow (Go 2] for groups of odd order. 

§14 The p-Part of Character J:?egrees 

In the two previous sections, we were concerned with the situation where 

the degrees of ordinary or p-Bnluer characters (resp.) of a solvable grou]? 

G are coprime to a given prime q. We extend this,question a little bit and 

consider the largest q-power which can occur as a factor in some character 

degree. 

14.1 Definition. Let G be a group and q be a prime number. 

(a) By eq(G) we den~te the smallest, non-negative integer e such that 

i f+l t X(l) for all X E Irr(G). 
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(b) For a prime P, analogously eq ( G) denotes the smallest non-negative 

integer fsuch that qJ+l t ,8(1) for al1',8 E IBrp(G). 

Note that - ahyays refers to the given characteristic p. Also observe 

that forN ~'G, eq(N) :::; eq(G) and eq(GIN) :::; eq(G) h?ld. The analogous 

statements hold for eq • We are i~lterested in bounding invariants of a solvable 

group G in terms of eq( G) and eq( G), respectively. Such invariants are the q­

length lq(G), the q-rank l'q( G) and the derived length ell (Q) for Q E Sylq( G). 

We remind the reader that the q-rank r· q( G) is the maximum dimension of 

all q-chief factors of G. 

Before we start, we state some useful relationships between the above 

invariants. The first fact is rather elcmenta.ry (sec [Eu, VI, G.G (c)]). 

14.2 Lelnma. Let G be solvable and q be a prime. Then Iq(G) :::; 7· q(G). 

The second bound does not at all lie at the surface. For odd primes q, 

it is a cOliseque~ce' of Hall-Higman B (cf. [HB, IX, 5.4]). The case q = 2 

however was obtained, more recently by Bryukhanova [Br 1], improving an 

earlier result of Berger and Gross [BG]. 

14.3 Theoreln. Let G be solvable, q a prime and Q E Sylq( G). Then 

Indeed, 14.2 and 14.3, also hold for q-solvable groups, as will some of the 

results of this section. However we shall restrict ourselves to solvable groups 

only. Also see Remarks 14.12. The next proposition is valid for all p-solvable ' 

G, as we prove later in Theorem 23.5, but it is not valid for arbitrary G even 

when N = 1. 

14.4 Proposition. Suppose that a E IBrp(N),N ~ G and X E IBrp(GI~).' 

If GIN is solvable, then x(l)/O:(l) IIGINI. 
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Proof. Arguing by induction on IG : NI, we may, as~ume that N is a maxi-:: 

mal normal subgroup. By the solvability hypothesis, G / N is cyclic. By 

Clifford's Theorem 0.8 and the il~ductive hypothesis, we ci:m assumeD: is G­

invariant. By Proposition 0.11 and Lemma 0.9, X = )../-£ wh~re 11 E IBrp(G) 

. extends a and)" E IBrp(G/N). Since G/N is cyclic, )..(1) = 1 and XN ~ 

a. o 

14.5 Lelllilla. Let· q be a prime and Q E Sylq(G). ,Assume that G 1S 

solvable and acts faitllfully and completely reducibly on a G F( q )-vector 

space V. Suppose tJiat q t IG : CG(v)1 for all v E V.! Then 

(i) dl(Q)::=; 2; and 

(ii) if q 2 5, then dl(Q) ~ 1. 

Proof. \Ve may clearly assume that G = ogl (d) I 1. ,If V = VI EB 

... ffi Vrl with irreducible G-modules Vi, then 0 ~ IIi G/CG(~) and Qi E 

Sylq(G/CG(Vi )) satisfie~ (i) o~ (ii), respectively, by induction. We may thus 

assume that V is faithful and irreducible. If V is quasi-primitive, it follows 

from Theorem 10.5 that either q211GI or Q is cyclic. Therefore Q is abelian. 

We may now assume that V is not quasi-primitive, and choose C ~ G 

'maximal with respect to Vc = VI EB··· EB Vn non-homogeneous, where the Vi 

denote the homogeneous components. By Theorem 9.3, we have that q ~ 3, 

q2 t IG/CI and C/CC(Vi) acts transitively on Vj#. In particular, assertion 

(ii) holds. To establish assertion (i), it suffices to S~lOw that· C has abelian 

Sylow q-subgrOlips. As Og(C) = 1, we may assume that C" =I: 1 and thus 

that C jCC(Vi) i r(~). By Huppert's Theore~ 6.8, it follows that IVil =32 

or 34 and 32 t IC jCc(Vi)l· Since ni CC(Vi) = l,a Sylow-3-subgroup of C 

is abelian also in this e::;cceptional case. , 0 

The following is a mO,dular analogue ,of Theorem 12.9, but with weaker 

assertiors. 
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14.6 Theorem. Let N :::;! G, GIN solvable, q and p distinCt primes,. 

Q/N E Syl~(G/N) and a E IBrp(N). Suppose tlmt q t f3(l)/a(l) for all 

f3 E i~rp(Gla). Then 

(i) dl (Q / N)~ 3; and 

(ii) .if q 2 5, then dl(Q/N) ::=; 2. 

Proof. We argue. by induction on IG : NI. Observe that if N ::; I( ~ 

G and rE IBrp(I(la), then q fr(l)/a(l) and q 1,(I)/r(1) for all , E 

IBrp(Glr). By Proposition 14.4, we may hence assume that Oqt(GjN) = I, 

but q I IG/NI· Let I = IG(a). If r E IBrp(IIa), then rG E IBrp(GloJ 

and r G (1)/a(1) = IG·; II· r(l)/a(l). The lwi)othesis on charact,er degrees 

implies that q t r(I)/a(1) and that Q::; I (up to conjugacy). We may thus 

assume that -a is invariant in G. 

Set MjN = Og(G/N) i 1 and let (J E IBrp(Mla). Then q f (J(I)/a(l) 

and since C7(l)/a(l) IIM/NI, we Dotain that (IN = a. In -particular, the .. 

map>. 1--+ (J . >. yields a bijection from IBrp(M/N) onto IBrp(Mla) (see 

Lemma 0.9). It follows that all ).. E IBrp(lvIjN) are linear and A1/N is 

abelian, becauseq I p. 

Let H/N be a Hall q'-subgroup.of GjN. We apply Lemma 0.17 (d) to 

find'P E IBrp(Mla) which is fixed by H. Hence IG: IG('P)I is a q-power, and 

the hypothesis about character; degrees implies that IG( 'P) = G. Lemma 0.9 

and the hypotpeses imply that IG(<p' >.) = IG()..) has q'-index in G for all 

).. E IBrp(MjN). 

As·Ogt(G/N) == I, we have that F(G/N) = M/N is. an abelian q-group. 

Let N .= No <Nt < .. . Nm' = M such that Ni/Ni - 1 is irreducible as 

G-module, and define Cj = C G( Ni/ Ni-J) 2 Jt.1. Observe that ni C j = Jt.1. 

and that Vi := IBrp(Ni/N j _ 1 ) is an irreducible and fajthful G/Gi-module 

(i = 1, ... , m). Since Jt.1/N is abelian, each (Jj E Vi is the restriction of !:lome 

character in IBrp(Jt.;[jN). By the previous paragraph; q t IG : Ic(fJi)I.\Ve 

apply Lemma 14.5 to the action of G/Cj on Vi. As ni Ci = Jt.1
l 

a Sylow q_ 
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subg~'oup of G 1M has derived length at most 2, and is even abelian provided 

that q 2 5. Since (MjN)' = 1, the result follows. 0 

Next is 'a consequent;e of both Theorem 12.9 and Theorem 14.6. 

14.7 Corollary. Let q be a prime, N ~ G, let G} N be solvable and let 

QIN E Sylq(GIN). 

(a) Suppose tllattp'E Irr(N) and qe+l f x(l)I<p(l) for all X E Irr(Gltp)· 

Tilen ell (Q IN) ::; 2e + l. 
(b) Suppose that ]J =1= q, a E IBrp(N) and qe+l f f3(l)/a(l) for all' 

f3 E IBrp(Gla)., Then 

(i) ,dl(QIN) ::;4e + 3; and 

(ii) if q ~ 5, then dl(QIN) ::; 3e + 2. 

Proof. (a) By Theorem 12.9, we may aSSUlne that e ~ 1 and therefore 

dl (Q IN) 2: 2. Walking along an ascending chief series of the solvable group 

G, 'we find N ::; I( ~ Gsuch that 41 (I(nQiN) = 2. Again by Theorem 12.9, 

tllere exists T E Irr (I(la) such tha~ q I T(l)/a(l). Therefore qe t X(~)/T(l) 
for all X' E Irr ( G IT), and, ind uctiOl~ on 'I G : N 1 yields that dl ( Q I( I I() ::; 

, .' 
2( e - 1) + 1. Consequently 

dl(QIN)::; dl(Q nl(IN) + dl(QI(II()::; 2e + 1, 

, as desired. 

(b) The proof relies on exactly the same arguments, but using Theorem 

'14.6 in pl~ce of Theorem 12.9. 0 

Vie now combine Theorem 14.3 and Corolla.ry 14.7 for N = 1 to obtain 

the following result. 

14'.8 Corollary. Let q be a prime, Q E Sylq( G) and G solvable: Then 

,( a) l q ( G) ::; dl ( Q) ::;2 . e q ( G) + l. 
(h) Let 1); =1= q. Then 
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(i) lq(G) :=; dl (Q) :=;4· eq(G) + 3; and 

(ii) if q 2: 5, tllen lq( G) ::; dl (Q) ::; 3 . fq( G) + 2. 

If f3 E IBrp( G), then Op( G) :£ ker(f3) and therefore fp( G) = fp( GlOri. G)). 

What remainsis the question whether one can bound lp (G) and the deri~~d 

'rerigth of PIOp(G) E Sylp(GIOp(G)) in terms of ep(G). Although such 

,bounds turn out to exist, we proc~ed to show that they cannot be 'derived 

"locally" as done in Corollary 14.7. 

14.9 Example. Let p be a prime. For each nori-negative integer n there 

. exists a solvable group G;. whose center Zn is a cyclic p' -group, and a faithful 

An E IBrp(Zn) suc~ that the following statements hold: 

(1) IBrp( GnlAn) = {Xn} and p f Xn(l); 

(2) lp( GnlZn ) = nj , 

(3) Opl (GnIZn) = ~; and 

(4) Op (Gnl Zn) is abelian. 

In particular it follows by Theorem 14.3 tha.t the derived lengt~l of a Sylow 

,p-subgroup of (GnIZ~)/Op(GnIZn) tends to infinity' as n -T 00. 

Proof. We set Go = 1 and construct the groups Gn iteratively. Assume 

now that Gn ha~ been found with the given properties. Let q be a prime with 

2 =1= q =1= p and q f IGnt· For sufficiently large m, GnlZn can be em?eddeel 

, into GL(m" q). Since 

A e-t (~ (A ~-1 ) 
embeds GL(m, q) into Sp(2m, q), GnlZn may be embedded into Sp(2~, q). 

Let, Q be extra-special of order q2m+l and exponent q. Then GnlZn acts 

faithfully on Q and on Q IZ( Q), while centralizing Z( Q) (cf. (Hu, III, §13]). 

Let H be the semi-direct product Q. Gn and Zn+l = Z(H) = Z(Q) x Zn. 

Since p i q, and q f.IGnl, the inductive hypothesis implies that Zn+l is a 

cyclic p'-grO'llp. We fix a faithful A E Irr(Z(Q)) and let B E Irr(Q) b~ the 

unique irreducible constituent of A Q. Let T = B x 1zn E Irr( QZn). Now 

f 

1 
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Zn = ker(r) and (IH : QZ~I, IQZn : ker(r)1) = 1. Since A is H-invariant, so 

are Band T. By Theorem 0.13, r extends to X E Irr(GIB). Since p t IQZnl, 
we have that r E IBr p ( Q Z n). N ow the restriction Ji of X to p-reglIla~ 
elements of His a positive Z-linear sum of irreducible Brauer characters of 

-H, yet flQZ" = T. Thus fl E IBrp(H) extending rand B E IBrp(Q). By 

Lemma 0.9, a f-t- a'fl is a bijection from IBrp(JI/Q) onto IBrp(HIB). We set 

An+1 = A . An1 a faithful irreducible character of the p'-group Zn+l. Now­

B'A n E Irr(QZn) = IBrp(QZn) and B'A n is the unique (ordinary or Brauer) 

irreducible character of Q Znlying over An +l. 

If 1] E IBrp(HIB . An), then 1] E IBrp(HIB) and consequently 77 -= /--L • a 

for a unique a E IBrp(H/Q) = IBrp(HIIQ). As Zn S; ker(r) $ ker(Ji), 

we even have that a E IBrp(HIIQ' An). Since H/Q := C n, it follows from 

the inductive hypothesis that IBrp(HIIQ . An) = {f3} for some 13 satisfying 

p t 13(1). Therefore, IBrp(IIIB . An) = {77= fl . f3} and p t qm . 13(1) = q(I). 

Since B . All is the unique irreducible constituent of A~_~i' = (A . An)QXZn, 

we also have IBrp(HIAn+l) = {17}. 

n.(!c:aJI t,hat G,JZu a.ds fa.it.hfully on Q/Z(Q) ~ (Q. Zn)/Zn+l, and 

therefore a minimal nornml subgroup of H/Zn+1 must be contained in 

(Q . Zll)/ZIl+1~ We may thus choose a GF(p)-vector space V_ such that 

H /ZIl+1 acts faithfully on V and C v( Q) = 1; in pa.rticular, Cv(H) = 1 

holds. We define G I1+1 to, be the semi-direct product V . H. Observe that 

Z(G n+1 ) = Z(H) = Zn+l is a cyclic pi-group, Op,(Gn+1 /Zn+d = 1 and 

Op(Gn+dZn+l) = (V· Zn+l)/Zn+l is abelian. Applying the inductive hy­

pothesis, we furthermore have that 

Since V is a p-group, a f-t au defines a bijection_ from IBrp(G lI -I-J) onto 

IBrp(H). Consequently, thelast paragraph implies that IBrp (Gn+1IA n +l) = 

{XII+l} a,lldpfXII+l(1). 0 

W~ next give estimates for the p-rank of G lOpe G) in terms of ep( G) = 
ep(G/Op(G)). For that it. is no loss t.o assume Op(G) = 1. 
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14.10 Lelnrna. LetG be solva-bie and Op(G) = 1. Then 

(a) r I)( G) S; 2 . e1)( G).; and 

(b) rp(G)- S; ep(G) provided tllatlGI is odd or p ~ '{2} U 9.Jl. 
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Proof. (a) Let iiI be a minimal norma.l subgroup of G and N /M := 

Op(G/ill). Since Op(G) = 1, 111 is a pi-group, and N/M acts faithfully 

on both 111 and V := IBrp(M). Let VN = VI ED " .. ED Vn with irreducible 

N-modules Vi and Ci = C N(Vi). By Theorem 4.7, there exist Ai, Pi E Vi' 

such that CN(Ad n CN(lli) = C j (i = 1, .. . ,n). Setting A = /\1'" An and 

f-l= Jil'''Pro we obtain CN(A)nCN(p) = ni Ci = iiI. Without loss of 

generality, we may thus assume that IN/ill I I IN : CN(A)1 2 and therc~ore 

IN/1Il I I <p(1)2 for all <p E IBrp(NIA). This implies that t ~ 2· ep(G), where 

pi := IN/MI. As Op(G/N) = I, induction finally yields 

as required. 

(1)) Unddr the hypotheses of (b), Theorem 4.4 yields the existence of _ 

1/ i E Vi such that C N (lJ i) = Ci (i = 1, ... , 11. ). The result now follows along 

the same lines as in part ( a). o 

14.11 Theoreln. Let G besolv~ble. Then 

. (a) lp(G) ~ 2· ep(G) + 1; and 

(b) lp( G) :S ep( G) + 1 provided tJlat IGI is acId or p ~ {2} U 9)1. 

Proof. (a) Lemmas 14.2 and 14.10 yield 

(b) Analogous. o 

14.12 R,enlarks. Let G be solvahle (111(1 p be prime. 
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(a) There even exist logarithmic estimate for lp( G) in terms of r p( G), as 

first 'shown by Huppert [Hu 1]. The following improv~ment can be'found in 

[Wo 5J: 

(1) .lp(G) ::; 2 + 10gs(rp(G)j(p + 1)) where s = p - 1 + 1jp; and 

(2~ lp(G) ::; 1 + 10gp(rp(G)) i~ p ~~. 

(b) Combining (c~) and Lemma 14.10 together, we also get the appropriat~ . 
logarithmic estimates for Ip(G) in terms of cp(G). 

. (c) Observe that the proof of Lemma 14.10' works exactly the same way 

for ep(G) instead of cp(G). Hence if Op(G) = 1, then 

(d) Therefore, (c) together w~th (a) yield logarithmic bounds for Ip(G) 

in terms of ep ( G). Note that these conside~ably improve the linear bounds 

obtained in Corollary 14.8 (a). We mention in this context that the assertion 

of Theorem 14.3 is best po~sible (cf. [HB, IX, 5.4]). 

A~ announced, we next bound dl (P jOp( G)) in lel;ms of cp ( G), where 

P E Sy~p( G). To do so, we take advantage of, Theorem 14.11. 

14.13 Lellllna. Let G be p-nilpotent, P E,Sylp(G) aJ?d Op(G) = 1. Then 

ell (1') $ cJI(G). 

Proof. Set N = Op,(G). As Op(G) = 1,it follows that Cp(N) = l. By 
, . 

Len~nia 12.2, P faithfully permutes the elements of hi· (N) and IBrp(N). Let 

n 1 , ... ,nil ~ IBrp(N) be the P-orbits ofIBrp(N), set Inil = pfi and assum~ 

without'loss of generality that 11 ~ ... ~ In. Then P ::; Sp!\ X ..• X Sp!n. 

As a Sylow p-subgroup of Sp! has derived length 1 (see [Hu, III, 15.3]), we 

have that dl (p)::; ft. On the other hand, if () E n1, then pit I <,0(1) for all 

<p E IBrp( GI()). Therefore 

o 

\ Itdl" I \ 1:/·, 

14.14 Theorem (Wang [Wa 1]). Let G be solvable and P E Sylp(G). 

Then 

Proof. ,We may assume that Op( G) = 1 and argue by induction on lp( G). 

Write N = Op''( G) and M = Op' ,p( G). Then M is p-nilpotent with 

Op(NI) = 1, and Lemma 14.13 yieldq dl(1\tfjN) :::; cp(NI) :::; cp(G). By 

induction, we also have that· 

Consequently, 

? dl.(P):::; dl(PNfjNf) + dl(MjN):::; lp(G)· cp(G), 

as required. - o 

Putting together Theorem 14.14 a:qel Lemmas 14.2 and 14.10, vie obtain 

thenext corollary. This result can be improved somewhat if Remark 14.12 

(a) is used in place of Len1ma 14.2. 

i4.15 Corollary. Let G be solvable and P E Sylp( G). T1Jen 

( a) ell ( P j O]J ( G)) ::; 2.· C p ( G) 2 ; an d 

(b)dl(PjOp(G)) :::; cp(G)2 provided that IGI is odd or p ~ {2} U 911. 

,We finish this section witl~ a result about ep(P) for P E Sylp(G). Note 

that ep(P) is the exponent of the largest charactel: degree of P. The following 

actually is a consequence of Theorem 7.3. 

·14.16 Corollary (Espuelas [Es 1]). Let G he solvable, p an odd prime 

and P E Sylp( G). If pn is tile ]J-part of IG jOp',p( G)I, tiJel] ep(P) ~ n. 

Proof. It is clearly no loss to assume \that Op' (G) = 1. Therefore, F( G) = 
Op(G), and 11 := Op(G)j<I>(G) is a faithful GjOp(G)-lllodule of charac­

teristic p. Also Irr (11) is a faithfl.11 G/ Op( G)-modul~ by Proposition 12.1, 
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and since p =1= 2, there exists A E Irr(V) such that Cp(A) Op(G), by 

Theorem 7.3. Consequently, pH I <.p(1) for all <.p E Irr (PIA), and ep(P) ~ 11, 

follows. 0 

For this section, the reader might also consult [MW,2] and [Wa 1]. We 

also note that Isaacs [Is 1] first derived Corollary 14.7 (a) in the case N = 1. 

§15 McKay's Conjecture 

Recall that k(B) = IB n Irr(G)1 for a p-block B of C. We let ko(B) = 
I{x E Irr(B)1 X has height zero}1 and ko(G) ~ I{x E Irr(G) I pi x(l)}I. 

If P E Sylp(G), the McKay conjecture states that ko(G) = ko(Nc(P)). 

Actually the original conjecture was only for p = 2 and G simple. The 

Alperin-McKay conjecture, a refinement of this conjecture, states th~t ko(B), 

= ko(b) where b is the Brauer correspondentof'.a (i.e. b is a block of Nc(D) 

for a defed grOllp D of 1) (.\.11<1 b = be;). Certainly, tIte Alperin-McKay COll­

jecture implies theMcKay conjecture. For p-solvabl~ G, a slight strength­

ellillg of the IvlcKay conjecture together' wi th Fong reduction (see Chapter 

0) implies the Alperin-McKay conjecture Theorem 15.12. 

Isaacs [Is 1] first proved the McKay ~onjecture for groups of odd order. 

\~Tolf [\Vo 1] extended this' to solvable G, relying heavily on woi'l( of Dade 

[Da 1]. The work of ISaacs, and Dade involves deep analysis of solvable 

groups with fully ramified sections (see Proposition 12.3).' Dade [Da 2] 

announced a proof for p-solvable, albeit long and complicated., In [OW 2], , 

Okuyama and Wajima gave'a, short proof for p-solvable G, even simplifying 

the proof for solvable G. The proof uses the Glauberman correspondence 

<llld It cOllllting ilrglllHclll; di~cl1~::;cd ill the llext. pnragraphs. Ulllike Da.de's 

, proof, no correspondence is given. 

SupposeN SI G and 0 E Ir1' (N) is G-jn~ariant.. A result of Gallagher 
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states that k( GIB) equals the number of "O-good" c~njugacy classes of G / N 

, (see the next two paragra.phs).' This appears as Exercise 11.10 of [Is]. An 

equivalent count, due to Schur [Sc 1), involves ,twisted group algebras. A 

modular version of Schur's result appears in [AOT]. Isaacs [Is 8] transla.ted 

this to Brauer characters and showed this works even for "7r-Brauer" char­

acters. We will give a pro~f of this counting argument for Brauer ~haracters. 

Of course, this leads to questions as to whether McKay's conjecture holds 

for Brauer characters. The answer is yes for solvable, even p-solvable G, but 

, not arbitrary G. These questions have been studi~d extensively in ['Vo 7) 

a,nd are discussed belo\.v in Sectioli 23. 

Suppose N SI G and <.p E IBrp(N) is G-invariant: Let g E G and choose 

f3 E IBrp((N,g)) such that f3 extends <.p (see Proposition o.n). We say that 

gis, <p-good if f3x = f3 whenever [x, g] E N, i.e. if f3, is invariant in C where 

GIN =CO/N(g). If /31 E IBrT) ((N,g)) also extends tp, thcll'/3t = A/3 for a 

unique liI~ea.r A E IBrp ((N, g) IN) by Lemma 0.9. Since (N, g) IN is central 

in CIN, A is C-invariant and IC(f31) = Ic(f3). Hence, the definition for g to 

be rp-goocl is independent of the choice of extension f3 E IBrp ((N, g)) of <po 

It is clear from the definition that g is rp-good if and only if ng is <p-good 

whenever 11, E N. For convenience, we also refer t<;:> N g E GIN as 'being 

<p-good. Furthermore, for y E G, it is easy to see" that g is tp.:.good if and 

only if gY is rp-good. Consequently, we will refer to <p-good conjugacy cla.sses 

of GIN. Recall GO is the set of p-regular elements of G and that cf°( G) is 

set of class functions on GO. ' 

15.1 Len1rna. SujJposethat N SI G and <.p EIBrp(N) is G-invariant. Then 

there exists a right transveral T for N in G and CJ : GO -t C sl1cll tlwt 1 E T 

and 

(i) If Nt is p-regular, then t is p.,-regular; 

W) ()(t) = 1 whenever t E T is IJ~regllla.ri 

(iii) If1p E cfD(Glcp) and g EGis p-reguiat, the111p(g) = CT(g)7jJ(t) wllcre 

t E /VgnI'. 

Note: 1Vhilc CJ is depeJ1dent 11])011 T <lnd <.p, it is independc1lt of the choice 



of "I{" Of course, (J' need not be a class ft;nction. 

Proof. When,everN.T is a p-regular element of G / N, then N x contains a 

p-regular elenlent of G. Observe that in order to prove (iii), it suffices to 

prove that 17(9) = (J'(g)1](t) whenever 1] E IBrp ((N,g)I<p). Thus it involves 

no loss ofgenerality to ass~me that G/N = (N g) isa cyclic: pi_group and 9 is 

p-regular. We then choose tEN 9 nT, define (J'on (N g)O ~nd show that (i), 

(ii), and (iii) hold. For the cose't N, we let 1 E T arid set 0-(71,) = <p(n)/<p(l). 

Without loss of generality, G > N. Let B E Irr( G) exteIld <po 

If B vanishes on every p-regular element of N 9 (this does not act~ally . 

happen, as we shall see in the next corollary), we let t be any 'p-regular 

. element of N 9 and define (J'(g) = 1. Certainly B(g) = (J'(g)B( t) in this case. 

Otherwise, we choose t E Ng so that t is p-reglllar alldB(t)-/= O. We let 

(J'(g) = B(g)IB(t)~ In all cases, B(g') = (J'(g)B(t). 

Now let lP E IBrp(G\<p) .. Since G/N is cyclic, 'i/J = f3B for ;:t linear 13 E 

IBrp(G/N). Now ljJ(q) = f3(g)8(g) =f3(t)a-(g)B(t) = (J'(g)1jJ(t), as desired. 

This proves the lemma. o 

Of course, the value (J'(g) is dependent upon the cl~oice of tEN 9 n T. 

But it is not dependent upon the choice of the extensIon B E IBrp( GI<p). 

This is clear from the last paragraph. 

15.,2 Corollary. Assume 'the notation of Lemma 15.l. Tllen 

(i) For 71, E N, ;(71,) ~ <p(n)/<p(1); 

(ii) If N 9 = Nt with 9 and t p-regular and t E T, then (J'(g) = f.L(g)/ f.L(t) 

for evelY extension Il E IBrp((N,g)) of<p. In pa~·ticular fl(t) =I 0, 

Proof. Part (i) is immecliate from Lemma 15.1 (iii) and the fact that 1 E T. 

By Lemma 15.1, we have tbat ljJ(.x) = (J'( x )1jJ( s) whenever ,x EGis p-regular, 

SET" x E Ns" and 1/) E cfO(GI<p). To complete the proof, we may fix 'a 

p-regular elernent t E T and}l E IBfp((N,t)\tp). It Buffices to show It(t) # O. 

l'IU~IJ:; UIVISLJH:::i (JF CllJ\llJ\CI1~it lJ/.:jldU':;U:i I:J!J 

We may assume without loss of generality that G = (N, t), so that G / N 

I isa cyclic p'-group. Assume that p( t) = O. By Proposition 0.11 and Lemma 

0.9, T(t) = 0 for all T E IBrp(GI<p), Hence 1](t) = 0 for all 17 E cfJ(GI<p), 

Now restriction 17 H lIT defines a vector space homomorphism from cfl (GI<p) 

into the vector space X of complex-valued ftUlctions on T. This is not 

onto, because 17(t) = 0 for a111] E cfl(GI<p), We do claim this map is 1-

1. Assume that j3T == 0 for some 13 E cf°( GJ<p). If x EGis p-regu1ar, 

then (3( x) = (J'( x )f3( s) for some sET and f3( x) = O. Thus'f3 == 0 and' 

the restriction map is 1-1. Hence IG/N\ = IIBrp(GI<p)1 = di~n(cf°(GI<p)) < 
. diln(X) = IT\ = IG / NI. By this contradiction, f.L(t) -/= 0, as desired. 0 

15.3 Theorelu. Let G, N, <p, T and (J' be as in Lemma 15.1. Let 

X E cfl(G). Tlle follqwing.arc eq1livalcnt: 

(i) X E cfl( GI<p); and 

(ii) Wllenever 9 EN't for t E T and 9 is p-regular, tIlen X(g) = (J'(g)X(t). 

Proof. By Lemma 15.1, (i) implies (ii). Assume (ii). Let n E N be 

p-regular. Since 1 E T, we have that x(n) = (J'(n)x(l). By Corollary 

. 15~2,' (J'(n) = <p(n)/<p(l) and so x(n) = (XO)/<p(l)) cp(n). Hence XN 

[X(l)/<p(l)]<p, as desired. 0 

15.4 Leluma. Suppose that N ~ G and <p E IBrp(N) is G-invariant. If 

9 EGis p-regular and Ng is not <p-good, tilen ljJ(g) = 0 for all1jJE cfD(G\<p). 

Proof. Since Iv 9 is not <p-good, there exists fl E IEr p( (N, g) \<p) that is 

- not invariant in G, where G/N = CC/N(Ng). Without loss of generality 

G = G. Set Z = (N,g) so that Z/N ::; Z(G/N). y!e may further assume 

that 1jJ E IBrp(G\<p). Since p E IBrp(Z) is not G-invariant and Z/N ::; 

Z(G/N), no extension of <p to Z is G-invariant. Thus we may assume that 

1jJ E IBrp(GlfL). 

For x E 'G, pX Axil for a unique linear Ax E IBrp(Z/N). Because 

ZjN ::; Z(G/N), /\xy/l = /lxy = (Axll)V = /\xAy/L and /\ry = A:r;Ay. Thus the 
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G-orbit of It is {).fL I). E ]() for some subgroup ]{ ::; IBrp(ZjN). Because 

It is not G-invariant, ]{ f. l. Because]( is a subgroup of the group of linear 

characters IBrp(ZjN) = Irr(ZjN), then]( = Irr(Zjll1I) for some subgroup 

N ::; 111 < Z (e.g. see [Hu, V, 6.4]). Thus 1/J Z is a multiple of P ZjM fl, where 

PZjM is the regular character of ZjM. Because N ::; M < Z = (N,g) we 

have that 1jJ(g) =PZjM(9)p(g) =0. , " 0 

The second paragraph _of the above proof repeats an arg:ument in Lemma 

12.6. That lemma could be used here at least for ordinary characte~s as it is 

possible to reduce to the case where G /N is abelian (i e. G = (N, g,x) with 

[x, g] E Nand flx f. p). 

15.5 Proposition. Assume tile notation of Lemma 15.1. Letg E G and 

t E T be p-regular with N 9 = Nt. Then 

,(i) <T(gX) = <T(g)<T(tX) for x E G. 

(ii) If t is c.p-good and if nt arid mt are G-cpnjug;ate and p-regular wit}] 

n, mEN, then <T(nt) = <T(mt). 

, Proof. (i) Now gx, t X E Ns for a unique sET. Also s is p-regular. Let. 

/', E IBr,,( (N, t)) be an ext.ension of <p., Then /L x is an extension of <p to 

(N,s) = (N, t)x. Applying Corollary 15.2 thr~ce, 

Ij,X(gX) = peg) =' <T(g)/-t(t)" 

fLX(t X) = o-(tX)fLX(S), and 

flX(9X) = o-(gX)/-lX(s). 

Consequently, 0-(9X)fLX(S) = 0-(9)fL(t) = <T(9)fLx(tX) = <T(g)o-(tX)/-lX(S). Since 

/lX(s) f. 0 (again Corollary 15.2), part (i) follows. 

(ii) Choose h EG with (nt)h = nd. Then hand t commute Iuod N. ' 

Because t is c.p-good, p must be (h)-invariant. Now p{nt) ~ /-lh((nt)h) = 
f-lh(mt) == f-l( mt). Applying' Corollary 15.2 (ii), , 

o-(nt) = /-l(nt)jp.(t) =/.l(mt)j/l(t) = <T(mt). o 
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15.6 Theorem. Let N ~ G and cp E IBrp(N) be G-invariant. Then 

IIBrp( GIc.p)1 equals the n~mber of <p-good conjugacy classes of p-regular ele­

ments, of G j N. 

Proof. Choo~e a t.ransveraJ T for N in G 'with T as in Lernma 15.1. Now 

choose a subset S ~ T such that 

(i) Each s E S is p-regular. 

(ii) Each s E S is c.p-good. 

(iii) If N gis' p-regular and c.p-good, then N 9 is c~njugate to (exactly) one 

Ns,sES. 

Consequently lSI equals the number of <p-good conjugacy classes of p-regular 

elements of G j N. Because IB r p (G) is a basis for the C-vector space cfO ( G), 

indeed'IBrl)(GI<p) is a ba.sis for cfO(GIc.p) and IIBrp(GI<p)1 = dim(cro(GIc.p))· 

If V = {f : S -+C}, then dim(V) = lSI. Consequently, it suffices to show 

that the restriction 1/J f-+ 1/Js is an isomorphism from IBrp( Glc.p) onto V. 

Trivially it is a homomorphism. 

Suppose that f3 E cfO(GIc.p) and fJs == O. We wish to show that f3(g) == 0 

for all p-:-regular 9 E G. By Lemma 15.4, we may assume that 9 is <p-good. 

By (iii) above, we may assume that g= ns for some s E S. By Theorem 

15.3, f3(g) = o-(g )(3( s) = O. Henc,e (3 == 0 and the restriction map 1/J f-+ 1/)S is 

one- to-one. 

Now let G : S -+ C. To complete the proof, we must show that there 

exists X E cfO(GIc.p) with xs '= fr.' We define X as 'follows. Fix i E G p­

regular: If x is not <p-good, we let X( x) = O. If x is <p-good, there is a vnique 

s E S such that x is conjuga.te to ns for some n E N (by (iii), above). In 

this case, we let x( x) = a( ~s )C\'( s) where; is as in Lemma 15.1. If x is 

a~so conjugate to_ ms with mEN, then Proposition 15.5 (ii) implies that 

0-( ns) = <T( ms), because s is <p-good. Hence X js well-defined. ,For s E S, 

o-(s) = l,by Lemma 15.1 (ii) and so Xes) = 1· C\'(s). Thus xs = G. 

Suppose y EGis conjuga.te to a;, Either both x a:ncl yare <p-good or both 



are not. In the latter case, X(x) = 0 = xCV). In the former case, both x 

and yare conjugate to so~e 11.3 with n EN, s E S. Then x( x) = X(y) by 

definition of X. SO X'E cf°( G). What needs t'o be shown is that X °E cfO(Glcp). 

Fix 9 E G p-regular and t E T with gENt. By Theorem 15.3, it 

suffices to show that X(g). = CT(g )X( t). Ifi is not '{I-good, neither i~ t and 

X(g) = 0 = X( t) in this case. We thus assume that 9 is <p-good and choose 

x-E G, s E S such that gX ENs. Note that fX ENs. By definiti~:m of 

x, X(g) = a(gX)a{s) andx(t) = a(tX)a(s). By Proposition 15.5, a(gX) = 

a(g)a(tX). Thus X(g) = CT(g)a(tX)a(s) ~ CT(g)X(t), as desired. 0 

.Let N ~ G and 8 E Irr (N). Then we let k( G18) = IIrr (GI8)1 and of course 

k(G)= IIrr(G)I. Finally, we let ko(GI8) = I{x E Irr(GI8) I pf x(1)18(1)}1· 

15.7 Corollary. Suppose that OIN is abelian and 8 E Irr(N). Then B 

extends to G if and onlyif k(GI8) = I~/NI. 

"Proof. If Ia(8) < G, then 8 does not extend to G and 

k(GI8) = k(Ia (8) I 8) S; k'(Ia(fJ)/N) < IGINI. 

So we assume e to be G-invariant. Now Lemma 12.6 shows there exists 

N S; M S; G such that each T E Irr (lvllfJ) extends e and is fully ramified 

with respect to GINI. Each XE Irr(GlfJ) has degree IG : MI 1/ 2 . fJ(l) aIld 

k( Gle) = 1M : NI. Thus e extends to Gif and only if M = G, or cquivalently 

k( Gle) = Iq I NI: 0 

15.8 Lenuua. Suppose tilatM, I( :s! G with I( and GINI p'-groups and 

IvI I I( a p-group. Assume tlJat G I M is abelian. Let P E Sylp( G) and set 

C = C·ldP). IffJE Irr(I() and fJ = 8p(I(,P)E In(G) is the Glauberman 

correspondent of e', then e extends to G if and only if fJ extends to N a(P). 
\ 

Proof. We argue by induction on IG : I(IIPI. If P = 1, then C = I( and 

(3 ~ f). Thus ~e may assume that 111 > I{. 

Set H = Ne(P). Observe that lvI= I(P, G = I(H and I( n H = G. 

Also GII( ~ Hie and M n H = e x,P. Let V E Hallp/(H). Then C :S V 

and VI(II( E Hallpl(GII(). Since p t 11(1, fJ extends to M (see Theorem 

0.13). By Proposition 0.12,- fJ extends to G if and only if e extends to I{V. 

Similarly, fJ extends to II if and only if fJ extends to V. 

Let SII( be a lninimal normal su'bgroup of GIICwith S S; M. LetQ = 
snP ~ SII( and D = CK(Q). By Theorem 0.15,fJp(I(, Q)p(D,PIQ) =fJ· 

If S < lvI, we apply the inductive hypothesis twice to conclude that e 
extend~ to SV if and only if ep(I(, Q) extends to DQV if and only if f3 
extends to QV. By the last paragraph, e extends to G if and ouly if (3 

extends to H. We may thus assume S = M,' i.e. M I I( is a minimal normal 

subgroup of G I IC In particular, 111) I{ is an elementary abelian p-group 

and an irreducible G I III-module. 

Assume that l( = 0 pi ( Gr Then M I I( is a fai thf ul irred \lei bIe G / M­

module. Since GIM,is abelian, in fact GjM is cyclic by Lell1ma 0.5. Since 

VI G ~ V 1(1 l( ~ G 1M, we have that fJ extends to V I( and fJ extends to 

V by Proposition 0.11. By the second paragraph, e extends to G and f3 

extends to H. We are done in this case. Letting _N = 0 p' (G), we thus 

assume that N > 1(. 

Now NII( ~ Op,(GlIn and is centralized by P. Also NnH = Opl(H) = 
C l1 (P) = CN(P) and NnHIG ~ NllC Because P cent.ralizes NII(, every 

I E Irr(NIB) is P-invariallt by Lcmma 0.17, and p(N,P) maps Irr(NIB) 

-onto Irr(N n HlfJ), by Lemma 0.16. Since p(N,P) is I-I, IIrr(NlfJ)1 = 
IIrr(NnHIf3)I. We may assume that e extends to H or (3 extends to NnH, 

since the theorem is trivially true oth~rwise. Since N I l( ~ NnH Ie ;S G I NI 

and is abelian, it follows that 

IN 1](1 = IIrr (N j'fJ) I = IIrr (N n H I fJ)1 = IN n H IGI· 

Now Corollary 15.7 implies that both fJ extends to Nand f3 extends to 

N n H. Since N I I( is abelian, we can apply the inductive hypothesis to 
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, G / N to conclude that 

0. extends to G ~ some CTE Irr(N)8) extends to G 

'¢==> some r E Irr(N n Hlf3) extends to H 

'¢==> 13 extends to H. 

Sec. 15 

o 

We now put the main ingredients, Theorem 15;6 and _Lemma 15.8~ to­

gether to get Mci<ay's conjecture for p-solvable groups. While Theorem 15.9 

(iv) is not the most general statement, it can be used with ;outine argu­

ments to deduce Theorem 15:10 and it can be used with 'Fong reduction to 

prove the Alperin-McKay conjecture for p-solvablt: groups. The hypothesis 

in Theorem 15.9 that <P extends to P is met if ko(GI<p) f= 0 or ko(H/<p) f- O. 

15.9 Theorenl. Suppos~ that L ::; I( ::; lvI ::; G with L, I(, M ~ G and 

<p E Irr(L) is G-invariant. Assume I(/L and G/Al are p'-groups ancllvI/I( 

is a p-group. Let P/L E Sylp(G/L), C/L = Cf{/L(P) and assun;ethat <p 
extends to P. Tllen 

(i) TlJere is a bijection from {8 E Irr(I{I<p) I 8 is P-illvariant } onto 

hr (CI<p) given by 8 f-'r f3 if and on!y if [8c , f3] 1:- 0 (mod p). 

(ii) TIle map in (i) is preserved by conjugation by H := Ne(P). 

(iii) Assume that,M ::;,A::; G with A/Al abelian. Ife f--:-t 13 is as in 

pa.rt (i), then 8 extellcj;". to A if and only if 13 extends to Ii n A. 
., - .; , 

(iv) ko(G)8) = ko(Hlf3) whenever 8 E Irr(I(I<p) is P-invariant ancZ' 

8 ~ 13 E lIT (C). 

(v) If, in addition, p t <p(1)0(<p), tilel1 also p t 0(8)8(1)0(8),8(1)., In par­

ticular 8, and 13 have canonical extensions iJ E Irr (1\1) and /J E Irr (C P). If 

A E Irr (1VJ / In is linear, tilen k( GIAB) = k( JI)/\c pfi). 

\ 
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Proof. Since H = Ne(P) and M = ](P :g G, the Frattini argument shows, 

that G = I{II and C = II n I{. Also GI]{ ~ HIC. If 8 E Irr(I(\<p) is P­

invariant and h ,E H, then 8 Tt is also P-ilivariant and '((jh)C = (8cl. Part 

(ii) follows from part (i). 

(iii) =} (v) For convenience (which should become apparent fUl:ther along 

in the proof), we next S~lOw that (iii) ===} (v) .. Since p t <p(1), clearly, 

p t 8(1)13(1) because ](/L is a' p'-group. Now 8£ = e<p for a p'-integer e . .' 

and so det( 8 L) = (det <p)e ,has p' -order. Since]( I L is a p'-group, 0(8) is 

p', Likewise, pf o(f3)~ By Theorem 0.13, we let 8 and S be the ~anonical 
extensions of 8 to M and 13 to C P. 

We haveAE Irr(MII() is linear and we let J = Ie(>.B) ~ Ai. Since A8 

extends 8,'we ha,ve that' Ie(AiJ) ::; Ie(8) = Ie(iJ). So J = Ie(iJ) n Ie(>'). 

Similarly, IlI()..CP/J) = II-/(AcP )nh'l(/J) = I H(ACP )nIH(B). Hence JnH = 
, IH(Acp/J). Also M(J n H) = J aild J/M ~ J n H/CP. We need to show 

that k( JIAB) ~ k( JnHIAcp/J). To this end, it suffices to show that j E JnH 

is Acp[1-good if and only if j is a AB-good element of J. Note that j is )'B­

good if and only if AiJ extends to (M,j,x) whenever x E J and H, x] E Al. 

It suffices to show that whenever 1\1 ::; A ::; J with AIM abelian, then ),,8 
extends to A if and only if ACP/J extends to An H. 

Suppose then )..iJ extends to A. In particular, 8 extends to A and part 

(iii) implies that 13 extends ~o e E Irr(H n A). Now ecp = a/J for an 

An H-invariant and linear a E Irr(CPIC). Since ,a, ACp E Irr(CP/C) 

are invarhlnt in' A n H and since (IA n HICPI, ICPICI) = 1, both a 

and ACp extend to AnH. Say al, A]E Irr(AnH) extend a and ACP 

(respectively). ,Then A]a]le E In(A n H) extending ACp/J. So we have 

shown that Acp[1 extends to An H whenever A8 exte~ds. The p~oof of the 

converse is essentially identical. So (iii) implies (v). 

(i), (iii), (iv). Since <p is G-invariant, it is ~o loss of generality to assume 

that <p is linear, via use of a character tri pIe isomorphism (see [Is, TheorelTI 

11.28]). Now <p = aCT, for linear a, a E- Irr(L) with o(a) (\' p'-number and 
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o( a) a p-power. Since rp extends to P and <P is line~r, a also extends to P. 

By Proposition 0.12, (J" extencis to / E Ir1' (G). For L ::; J::; G, the mapping 

T ---? /;1 T is a 1-1 degree-prese1'v~ng map Irr(Jlrp) onto Irr(Jlcy). Thus it 

is without loss of generality to assume that tp == tl', i.e. that <P is linear and 

p { o( tp). vVe may also assume that <P is faithful, S0 that now Land I( are 

pI-groups. We now employ the Glauberman correspond~nce (Theorem 0.15) 

to pro"ve (i) and Lemma 15.8 to prove (iii). 

Since we now have that p { 11(1, we have canonical extensions B E Irr (M) 

of () and ~ E Irr ( C P) of jJ. Repeating the argument of (iii) . ===} (v), we 

have that k(GIAB)'= k(HIAC;jJ) for alllinear'A-E Irr(lvllin. We may 

choose linear AI, . '.' , A k E Irr (M I I() so that each linear character of M I 1( 

is H -conjugate to exactly one 'Ai, 1 ::; i ~ k. Since G = J( II, we have that 

--

{x E Irr(GI()) I p{ x(l)} = Irr(GIAIB)U .. ·U Irr(GIAkB). 

N ow restriction gives a bijection from 11'1' (1vl I I() onto Irr ( C PIC) and each 

linear character of CPIC isH-conjugate to exactly one (Ai/CP, 1 ~ i ~ k; 
So 

{1jJ .E Irr (111,8) I p {1jJ(I)} = Irr (1!I(Al)cPP) U··· U Irr (HI(Ak)CP~)' 

Since k(GIAiB) = k(IIl(Ai)cp/3) for each i, ko(GIB) = ko(IIIf3). o 

15.10 Theorem. Suppose tl1at GIL is p-solvable and <p E Irr (L) is P­

invariant where PIL E Sylp(GIL). Set HIL = NC/L(PIL). Then.ko(Gltp) 

= ko(Hltp)· 

Proof.' By induction on IG : LI. The r~sult is trivially true if P <l G. 

vVithout loss of generality, H < G. 

Let I =' Ic( rp). ThenP::; H n I ::; I. 'Since IG : IIIH : If n II is a 

pI-number, 'the Clifford correspondence yieldsthatko(GI<p) = ko(11<p) and 

ko(Ii\<p) =: ko(flnlltp).· But I[nJ/L == N1/L(P/L). If J < G, the inductive 
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hypothesis implies that ko(Iltp) = ko(Hn1Itp). Then ko(GI<p) = ko(HI<p), 

as desired.Wethus assume that Ic( tp) == G. 

We next,let I(/ L be a. chief fad or of G andsd J = Nc(I( PI Ie). Suppose 

. that (), f-.l E lIT (I(ltp) are P -invariant. We claiirt that () and f-.l are G-conjugate 

if and only if they are J-conjugate. Indeed, assume that () = f-.l9 for SOIne 

9 E G. Then PI L, p9 I L E Sylp(1c( B)I L) and so p9 = pi for some i E 
'. . -1 -1 

Ic( B). Then ig-1 E N c(P) S; J and BI 9 == B9 = f-.l. The claim follows. 

Further note that if a, ,8 E Irr (Kltp) are J-conjugate, then a is P-invariant 

if and oI1ly if f3 is P-invariant. 

Now we may choose Bll ... , Bt E Irr (I(ltp) such th~t each Bj is P-invariant 

and such that eachP-invarinnt It E Irr(J(lcp) is J-colljtl~atc to cxnd.ly 

one B j. FUrtherIll~re, we may assume there exists OS; k S; t such that 

p t ()j(1)/tp(1) i(and only if j ~~. IfX E Irr(Gltp) and p { x(l)I<p(l), 

it follows from the last paragraph that X E Irr (GI() j) for a unique j ~ k. 

Sir;nilarly, if 1jJ E Irr (Jltp) and p { 1jJ(1) I tp(l), then 'IjJ E 1rr (J I() i) for a unique 

i S; k. The inductive hypothesi~ yields 'that ko(GI()j) = ko(JI()j) for all 

j ~ k. Hence ko( Gltp) = ko( Jltp). If J < G, the inductive hypothesis 

implies that ko( Jltp) = ko(Hltp) and hence ko( Gltp) = ko(Hltp). We may 

thus assume J= G, i.e. G I Ii has a normal Sylow p-subgroup. 

We may assume that ko(Gltp) -1= 0 or ko(HI<p) -1= O. In either case, there 

exist P S; N S; G and 1] E Irr(Nltp) such that p {17(1)/tp(1). Since <p is 

G-inv~riant, there exists a E lIT (Pltp) with [11P, CY] -1= 0 and p { a(l)lrp(l). 

Since PI Ii is a p-group, <p extends to a E Irr(P). 

If I(IL is ap-group, then GIL has a normal Sylowp-subgroup and H = 
G, a ~ontradiction. Thus 1(1 L is a p'-group. In particular, k = t, i.e. p { 

~Bi(l)/tp(l) for all i, 1 ::; i ~ t. We have that each P-inva~iantf-.l E hr (I(I<p) 

is G-conjugate to exactly one Bj (1 ::; i .S; t). The Frattini argument shows 

that G = I( H and so each P-invariant jJ, E 1rr (I(I<p) is H -conjugate to 

exadly one ()j. Let C = 1( n H and n~te that elL = C J(/L(P), By 

Theorem 15.9 (i), there exist ,81" . . ",8t E Irr (Clrp) such that [( Bi)c, .ai] t= 0 
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(mod p) and each r E Irr(C/<p) is II-conjugate to exactly one f3i(note 

t!lat Lemma 0.17 shows th~t every r E Irr(CI<p) is P-invariant). If X E 

Irr(GJtp) and pi XCI), thenx E Irr(GJBj) for a unique j (see above). Thus 

ko( GI<p) = Z:=l ko( GIBi ) andko(HI<p) = Z:=l ko(HIPi). Since <P extends 

to P, then ko(GIBi) ko(HIf3i) for all i by Theorem 15.9 (iv). Hence 

. ko(GI<p) = ko(HI<p), , 0 

Applying Theorem 15.10 with L = 1, we immediately get McKay's con­

jecture for p-solvabIe groups. 

15.11 Corollary. If G is p-s?lvable 'and P E Sylp(G), then ko(G) 

ko(Ne(P». 

Next, we ded~ce the more refined Alperin-McKay conjecture for p-solva­
bIe G. 

15.12 Theoreill. Le~ B be a p-block of it p-solvable group G .. Lei D be a 

defect group of B ~nd let b E bI(N c( D» be the Brauer correspondent oEB. 

Tllen ko( B) = ko( b). 

Proof. Argue by induction on IG : Opl(G)I. Let I( = Opl(G) .. We may 

choose <p E Irr(J() covered by B so that D'::; 1:= Ic(<p) (see Proposition 

0.22 and Lemma 0.25). Applying Corollary 0.30 and Lemma 0.25, there exist . 

blocks Bo of I and bo of InN e(D) such that ko(B) = ko(Bo), ko(b) = ko(bo), 

and bo is the Bra~er correspondent of Bo. If I -< G, the inductive hypothesis 

implies that ko(Bo) = ko(bo). 'Then ko(B) =' ko(b), as desired. Thus we 

assume that <p is G-invariant. 

By Theorem 0.28,D.E Sylp( G) and B is the unique p-block covering {<p}. 

Let f.l = <pp(I(,D) E Irr(C}<.'(D» be the Glauberman correspondent of <po 

By Theorem 0.29, b is the unique p-bIock of Ne(D) covering {p}. Thus 

ko(B) ,~ ko(GI<p) and ko(b) = ko(Ne(D)I!l), as D. E Sylp(G). By Theorem 

15.10, ko(GI<p) = ko(I(Nc(D)I<p). By Theorem 15.9 (iv), ko(J(Ne(D)I<p) = 
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ko(Nc(D)I/-l). Hence ko(E) = ko(b). o· 

We remark that both the McKay conjecture and Alperin-McKay con­

jed ure remain' open for arbi trary G. They have been verifi~d t for cert ain 

families of groups. But 'unlike some conjectures, there is no known method· 

to reduce these questions to simple groups. 

We let I(G) ~ IIBrp(G)1 and lo(G) == I{<p E IBrp(G) I P 1 <p(I)}I· In 

light of the above results, one might ask whether lo( G) = lo(N c( P» when 

P E ~::Ylp(G). While this is not true for arbitrary Gj it is true 'for p-solva.ble 

G and we give a proof below in Section 23 and we will discuss there a number 

of ,related questions. 



Chapter V 

COMPLEXITY OF CHARACTER DEGREES 

§16 Derived Length and the Nunlbe~ of Character Degrees 

We let cd(G)={X(I)IXEIrr(G)}. 1. M. Isaacs proved that iflcd(G)IS;3, 

then G is solvable and dl (G) S; led (G)I (see [Is, 12.6 and 12.15)). Since 

led (A5)1 = 4, we cannot improve the first conclusion, but it has been con­

jectured by G. Seitz that dl (G) S; led (G)I for all solvable groups G. Isaacs 

gave the first general bound, namely ell (G) S; 3 ·Jed (G) I (or 2 ·led (G)l if IGI 
islodd). These are proved in Theorem 16.5~ below. Lemma 16.4 is impor­

tant here and further analysis allows us to present Gluck's improvement to 

. dl (G) -S; 2 . led (G) I in Theorem 16.8. Using Theorem 8.4, we give Berger's 

proof of Seitz's conjecture for groups of odd order. The .key result here is 

Theorem 16.6, which does not ~101d for arbitrary solvable groups:. 

-, 
w· 

. The first proposition i~ quite important to this -section. For X E lIT (G), 

we let D(X) = n{ker(1p) 1.1p E IrrCG) and '1/;(1) < X(I)}. Should X be 

linear, then D(X) = G. 

16.1 Proposition; Let X E Irr(G) and write X =.Bo for someH S; G and 

BE Irr(H). Then D(X) S; D(B) S; H. 

Proof. Note that when X is, linear, then X = Band H = G = D(xJ If V; E 

Irr(H) ~nd 1/;(1) < B(l), then 1/;0(1) <, BO(1) = X(I) and every irreducible 
, 0 

constituent of 1/;c has degree less than x(1)· Thus D(X) S; ker( 1/; ) ::; 

ker(1j;) S; II. 'Hence D(X) S;.D(B), eXCeI)t possibly when B is linear and 

H < G. B~t"in this case, observe that IJ-Ic(1) = B°(1) = XCI) and IH O 

·reduces. Thus D(X) S; ker(l/1 c) S; H = D( B). 0 

:til 

We introduce a little mor~ n~tation. For solvable groups G, we let 1 = 
It < 12 < ... < It be the 1 distinct character degrees of G. We let Di(G) = 

n{ker(x) I X E Irr(G) and X(l) ::; Jd· Thus Do(G) = G, DI(G) = G' and 

D(X) = Di-1(G) should X(I) =,/i. 

A group G is called an }vI -gro'up if each X E Irr ( G) is induced from a linear 

character of a subgroup of G. Taketa proved that M-groups are solvable, in 

fact dl (G) S; led (G)I (see [Is, 5.12 and 5.13]). The strategy of this section 

is not dissimilar to, although morec.omplicated than, the proof of Taketa's 

Theorem (as given in [Is]). To show that dl(G) ::; /cd(G)1 for an M-group 

G, it suffices to prove that D(X)'::; ker(x) for all X E Irr(G). Write X =).c 

for a linear). E Irr(H) and H S; G, then D(X) ::; H by Proposition 16.1, 

and D(x)' S; nxEc(H'Y S; nXEo(ker().)Y = ker(x)· 

16.2 Proposition. Let G be solvable ~nd let V be a completely reducible ""'l'! 

faithful G-lIlodu1e over possibly diffcrent nnite fields., ThcIl G has a faith­
\ 

ful complex charact:er V; with 1/;(1) ::; dim(V). (Here, dim(V) denotes the 

number of free generators of V.) Furthermore, it may be arranged that 1P is 

irreducible i-f and only if V is irreducible. 

Proof. We argue by induction on dim(V). If V = VI EB V2 . for proper 

. G-submodules Vi) the inductive hypothesis implies the existence of 1/;i E 

Char (G) with ker( 1/;d = CC(Vi ) and V;i(l) ::; dim(Vd~ Let 'IjJ = V;I + 1/'2) 
so that k~r(1p) = CC(VI ) n C O(V2 ) = 1 and 1/;(1) S; dim(V). We may thu~ 
assume that V i~ irreducible over a field T. Let iC be an algebraically closed 

extensionfield of T. Then V 0,riC = VI EB· .. EB Vt for distinct absolutely irre­

ducible G-modules Vi that are Galois-conjugate by Proposition. 0.4. Since V 

is faithful and the Vi are Galois-conjugate, VI isa faithful G-module. By the 

Fong-Bwan Theorem (see Corollary 0.33), t~ere exists 1/; E Irr(G) faithful 

with 1/;(1) = dimx:(Vd· Then 'IjJ(1) ::; dimx:(V0,r iC) = dim,r(V). 0 

If V above has characteristic p, the proposition is still valid for p-solvable 

G. Note that if p is the smallest prime divisor of IV], then 1jJ(1) ::; logp(IV/). 

,.J 
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16.3 Corollary. Suppose X E Irr(G) is faithful and primitive and. G is 

solvable. Set F = F(G) and T = Z(F). Then 

(a) T = Z( G) is cyclic; 

(b) FIT = EI/T X .,. x EmiT where each EdT is an irreducible sym­

plectic G-module; 

(c) GIF acts faithfully on FIT; 

. (d) IFITII X(I)2; and; , 

(e) FIT lJas a complement in CIT. ' 

Proof. If B :g G is abelian, then XB = e· (3 for a faithful (3 E Irr (B) 

and integer e" because X is faithfnl and primitive. Conseqvent1y B is cyclic~ 

Since fJ is G-invariant, linear and faithful, B ::; Z( G) (this uses that C is 

algebraically closed!); -Thus every normal abelian subgroup of G is cyclic 

and central. The assertions now follow from Corollary 1.10, Corollary 2.6 

and Lemma 1.11. 0 

16.4 Lemma . . Suppose that X E Irr (G) is a faithful primitive c11ara~t.er of a 

solvable group G. Set F = F(G), T = Z(F) = Z(G) and I{IF = 021 (GIF). 

AsslIme tllat D(X) i F. TllCn 

(a) tllere exists p.E Irr (G I F) faithful with p(1) = X(l); 

(b) I{IF = F(GIF) is abelian and x(1) IIGII{I; 

(c) D(X) ::; I( andD(x)"1 = 1; 

(d) XCI) = IF: T1 1
/

2 is 2 or 2\ 

(e) FIT is a faithful irreducible elF-module; and 

. (f) GIT has a falthful irreducible character w with x(1) < w(l) ::; 

(3/2) . x(l). 

Proof. Since X is faithful and pri~1itiv~, Coro!lary 16.3 applies. Since 

D(X) i F, we have that F < G and hence T < F (see Corollary 16.3 

(c)). lroposition 16.2 implies that there exists a,faithful p E Chru:(CIF) 

satisfying pel) ::; rank (FIT). Set e = IF : TjI/2 E Z and let' p be 
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the smallest prime divisor of e., Then pel) ~ rank (FIT) ~ logp(e 2
). 

Since ker(p) = F i D(X), some irreducible constituent ~ of p satisfies 

pel) ;:::~(1);::: x(l). Now X(l) = et for an integer t (see Corollary 16.3 (d)). 

Thus 

2 'logp(e);::: pel) 2: eel) ;::: x(l) = et. 

Then e2 ;::: pet;::: 2e
• Since pie, this can only occur when p = 2, t = 1, and 

e is 2 or 22. Hence, p(l) = e(l) = X(l) = e and p is irreducible; It follows 

from Corollary 16.3 and the supplement of Proposition 16.2 that FIT is a ' 

faithful irredll:cible GIF-module. S~nce T =' Z(G) and FIT is a 2-group, 

02(GIF) = I and so F(GIF) .~ KIF. Since p E Irr(GIF) isJaithful of 

degree 2 or 22"pJ<.:/F is faithful and all irreducible constituent~ of PJ(/F are 

Ilnear. Hence I(IF:is abelian and ](/F = F(G/F). By Ito's Theorem [G.15 

of Is], p(l) IIGII{I and therefore X(l) IIGII{I. We have proven conclusions 

( a), (b), (d) and, (e). 

First suppose that e = 2 (recall e = IF : T1 1
/
2 ~ x(1)). Since FIT is an 

irreducible and faithful GIF-module,GIF ~ A3 or S3. But p 'E Irr(GIF) 

has degree 2 and so GIF ~ S3' NowD(X) = G1 
::; I{ and I{," ::; F" = 1. If 

1 =1=)... E Irr(FIT)" then each irreducible constituent of)"o has degree'3 and 

kernel T. Parts (c) and (f) follow itlthis case. 

Finally we may assume that e = 22. Now GI F acts faithfully, ir~educibly 

and symplectically on FIT. A cyclic irreducible subgroup of G I F must have 

order dividing 22 + 1 (see [Hu, II, 9.23]). Since 22 IIG I I{I, it follows from 

Corollary 2.15 applied to GIF acting on V:= FIT that 

(i) GIF::; f(24), II{IFr = 5 and IGII{I = 4; or 

(ii) G IF::; S3 wr Z2, I{ I F ~ Z3 X Z3 and G I I{ is abelian of order 4 or 

GII{,~ DB.' 

Either G 1 
::; I( or G I I{ has a faithful irreducible character of degree 2. 

Thus D(X) :::; ]{ and D(X)fll = 1, proving (c). 
" 

In case (i), I{ IF induces three orbits of length 5 on Irr (V)#. Vie t.hus 

may ,find )... E Irr (V) such that IG()..)/ F is cyclic of order 4. Then).. extends 
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[,0 .t\' e llT~lG('\)/l') Ly IJrupm;i~,iull U.11 I.:tlh.l (X'Y'/E In~G) of degree 5. 
Since FIT is the unique minimal normal subgroup of GIT, T = ker((A*)C). 

, Pad (f) follows in this case, and we may assume that (ii) occurs. 

N ow V = VI EB V2 for subspaces Vi permuted by G, and G IF has a 

subgroup M IF of index two that acts irreducibly on each V(. If Ci = 
CM(Vi), then CI n 62 = F. Since 2 I IM/FI, 2 I IMICd for each i. 

Thus MICl ~ 53' Let a = ,A X 1 E Irr (V) with A "I 1. Then C1 :::; 

IM(a) = Ic(a) and IIc(a)IC11 = 2: If a* E Irr(IG(a)) were an extension 

of a, then ~ O:'*)G E Irr (G) would have degree 6 and kernel T. To establish 

(f), it thus suffices to show that a extends to IG( a). Since FIT has a 

complement H/T in Grr (by Corollary 16.3 (e)), and T :::; ker(a) < F, it 

follows that F I ker( a) has a complement J I ker( a) in I G( a) I ker( 0:') ,namely 

J = (H n Ic( a)) . ker( a) = 11J ( a) . ker( 0:'). Since J centralizes F I ker( a), 

we have I G( a) I ker( Q) = F I ker( a) X J I ker( a), and ,0:' trivially extends to ' 

I G ( 0:'). 0 

'16.5 Theorem (Isaacs). Let X E Irr (G) with G solvable. Then 

(a) D(x)''' :::;'ker(x); 

(b) ifX(l}is odd, tllen D(X)" S ker(x); 

(c) dl(G) :::; 3"lcd(G)I- 2; and 

(cl) if IGI is odd, tllen dl (G) :::; 2 . Icd (G) I -' 1. 

Proof. (a), (b) We argue by induction on IGI and write X= fJG for a prim­

itivefJ E Irr(H), H:::; G. By Proposition 16.1, D(X) :::;D(fJ). If II< G, 
the inductive hypothesis yields that D(X)"I :::; D( fJ)11I :::; ker( fJ). Since 

D(Xylf :s1 G, D(X)'" :::; n 9E G(ker(B))9 = ker(fJG) = ker(x). Should X(l) 

~e odd, we also have fJ(1) o~d and argue inductively that D(X)" :::; ker(x). 

So we may assume that X is primitive. Let FI ker(x) = F(GI ker(x)), so 

that F" ~ ~(er(x)) by Corollary 16.3. We can thus assume that D(X) i F. 

Then Lemma 16.4 implies that X(I) is even and D(X)"' S ker(x). This 

proves (a) and (b). 

(c), l<..i) llecall ilmt 1 = h < .. , < II are the distinct iIT~clucible cllaracter -'.~ 

degrees of G and DiCG) = n{ker(~) 11/J E Irr(G), 1;>(1) S fd. Parts (a) 

and (b) show Di( G)"' ~ Di+1 (G), and when G has odd order, Di( G)" S 
Di+l(G). Since GID1(G) = GIG', we see that dl(G) :::; 3 .[- 2, and when 

IGI is odd, dl (G) :::; 2 . [ - 1. 0 

: Suppose that M is an elementary abelian p-group, on which C. acts. The 

action of G on: lrr (M) is given by A9(m9) = ,A(m). If U is the subgroup 

ofpth roots of unity in C, then Irr(M) is just,Hom(M,U)., Writing NI 

additively, M is a vector space over F := GF(p), and Gacts on the dual 

space M* = HOln;:-(M,'F) by f9(m 9) = f(m). Since F is just the prime 

fieI"d, M* = Hom (NI, Zp). As U ~ Zp; it follows, that N/* and Irr (M) are 

isomorphic G-modules. Indeed, an isomorphism is given by 

<p H cxp((27rilp)<p), <P E 111*, 

16.6 Theorenl (Berger). Suppose that X E Irr (G) is a faithful and prim­

itive dJaracter for a group G of odd order.' Then D(X)' = 1. 

Proof. We apply Corollary 16.3, and let F = FCC) and T = Z(F) = Z(G). 

If F = T, then G is cyclic and we may assume that F > T. 

By Corollary 16.3, IF : Tll/21 X(I), and FIT = EdT X •.. x EmiT 

where each EdT is an irreducible symplectic G-module. Now In (FIT) = 

VI EB ... EB Vrn where Vi := lIT (EdT) is an irreducible G-module as well 

(cf. Proposition .12.1). By the comments preceding the theorem, Vi is G­

isom~rphic to the dual space (EdT)* of EdT. Since Ed'r has a non­

singular,G-invariant form, EdT ~ (EdT)* (see [HB, VII, 8.10 (b))). Thus' 

each Vi is an irreducible symplectic G-module. By Theor~nl 8.4, there exists 

1 f. Ai E Vi such that 

Set Q' = Al ... Am E Irr(FIT). Then 

,IG : IG(a)1 S IT IVi 1
1

/
2 = IF;TI 1

/
2

, 

i 
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and IG ; lc(a)1 < XCI). Again by Corollary 16.3, FIT has a complement 

in GIT. Since T ::; ker(a) ::; F, it follows that F/ker(a) has a cOlnple­

ment J / ker( a) in I c( a)/ ker( a). Sincea is linear, J centralizes F / ker( a) 

and so Ic(a)/ker(a) = F/ker(a) x Jlker(a). Then a extends 'to a* E 

Irr(Ic(a)/ker(a», (a*)C E Irr(G) and «a*)C)(l) ~ IG ; Ic(a)1 < X(l). 

Now T ::; ker«a*)G), but ker(O'*)C) n F = T,'because a~/1' = Al '" Am 

with Ai i= 1. By Corollary 16.3 (c), F/T = socle(G/T) and so ker«a*)G) = 

T. As «a*)G)(1) < x(1), we obtain D(X) S; T and D(X)' 1, as de-

sired. o 

16.7 Corollary. Suppose that G has odd order. Then dICG):S Icd(G)I. 

Proof. Arguing as in 16.5 (c), (el), it suffices to show that D(X)' ::; ker(x) 

for all X E Irr(G). This is done by induction on IGI. If X is'prinlitive, 

our claini is an immediate consequence of Theorem 16.6. Otherwise, write 

X = BG for some B E Irr (H) and H < G. By Proposition 16.1 and induction, 

D(X)' ::; D( B)' ::; ker( B), and D(X)' ::; ngEG(lcer( B»g ~ ker(x). 0 

Finally, we exploit the information in Lemma 16.4 to give Gluck's im­

prOvclllcnt that dl (G) :S 2· Icd( G)I for all solvable groups G. 

16.8 Theorem (Gluck). Suppose that G is solvable and that Dr-1(G)" 

i Dr(G) for some integer r 2 2. TllenDr_1(G)""'::; Dr+I(G). 

Proof. Recall that 1 = h < ... < !I are the distillct character degrees of 

G and Di(G) = n{ker(1jJ) I tP E Ir~(G), 1;&(1) ::; Id· Let D = Dr-I(G.). 
We may then assume that there exist x, B E Irr (G) -such that x(1) ::; IT) 
B(l) ::; 1'1'+1) Dil i ker(x) and D"" i ker( B). By the definition of D) in fact 

x(1) = In andso D = D(X). By Theorem 16.5 (a), we may also assm:ne 

that B(l) = f,+I. 

Step '1. We have 1,'+1 :S (3/2) . fr' 
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,Proof. Choose H :::; G and a primitive charader XO E Irr (H) such that 

xf( ,= x· By Proposition 16.1, D = D(X) :S D(Xo) :SH.Let J(o = 
ker(xo), To/J{o = Z(HII{o) and Fo/J(o = F(H/I{o). By Corollary 16.3, 

Po/1(o is metabelian. Now D i Fo, since otherwise DII ::; 1(0 = ker(xo) 

and D" ::; n gEG(ker(xo»9 = 'ker(x), a contradiction. By ,Lemma 16.4 (f), 

there exists a faithful,w ,E Irr(H/To) with' Xo(l) < w(l) ::; (3/2) . Xo(l). 

Consequently, X(I) < w G (1) :S (3/2) . x(1) . .Ifw G is not irreducible, then 

there exists a constituent, E Irr (G) of w G such that ,(1) < x(1). Thus 

D ::; ker(,) n H = ker( I II) ::; ker( w) = To, because w is an irreducible 

constituent ,of j.H. This contradicts D i Fo. Hence w G is irreducible, and 

X(l) < wG(1) :S (3/2) . X(I) implies that fr+1 S (3/2). fro 

Step 2. Write B =; IJ G for a primitive character It E lIT (J) and J s C. Let 

L == ker(p). Then 

(a) It(l) > 1; , 

(b) if C¥. E Irr (J) and a(l) < (2/3) . p(1), then D :::; ker( a)j 

(c) D ::; JI; and 

( d) dl ( J I L) > dl ( D L / L) 2 5. 

Proof. (a) Recall that D = D(X), x(1) fr and Bel) = fr+1. By 

Theorem 16.5 (a), D"' ::; Dr. If Ii is linear, then Lemma 16.1 (with it 
in the role of B) implies that D~ = D( By ::; I' .:; ker(p), and therefore 

.D"I! ::; ngEG(ker(f.l»g = ker( B), a contradiction. Hence f.l(1) >,1. 

(b) We now have aC(l) < (2/3) .pG(l) = (2/~). B(l) = -(2/3)· 1'1'+1 ::; 1'1" 
by Step 1. Hence each irreducible constituent r of a C has degree less t.han 

1'1' and so D .:; ker( r). Thus D ::; ker( O'G) ::; ker( 0'). 

(c) If ..\ E Irr( J) is linear, then (a) implies ..\( 1) < (2/3) . p(l). By (b), 

D :$ ker(..\) and so D :::; J', 

(d) Ifdl(DLIL)::; 4, then D""::; ngEG L9 = n9EG(ker(p))9 =ker(B),' 

a contradiction. By (c), it also follows that dl(J/L) > dl(DL/L). 

Step 3. Let F/L == F(J/L) and T/L = Z(.J/L). Then F/T is a faithful 

irreducible symplectic J/F-module and IF/Tj1/2 = 8 = It(l). Also) JIF 



has a faithful irreducible character p satisfying' p(l) = 6. , 

Proof. By 'Corollary 16.3, FjT = WI EB ... ill vVk for irreducible symplectic 

IjF-modulesWi. Also l/F ads faithfully 011 F/T., Write /Wi'l = er for 

integers ej and set e = el ... ek. Then e I ,u(l) and e > 1, by Corollary 16.3 

and Step 2 (d). ,By Proposition 16.2,' J IF has a faithful character (J' such 

that a(l) S; rank (F/T). Since FII :::; L, Step 2(b, d) implies that there 

exists an irreducible constituent p of a with p(l) ?: (2/3) . f-l(I) ?: (2/3) . e. 

Thus 

rank (FIT) ?: a(l) ?: p(l) ?: (2/3) . f-l(1) ~ (2/3) . e. (16.1) 

If p is the smallest prime divisor of e, then (2/3)· e S;' rank (FIT) S; 10g]J( e2
). 

In particular, e3 ?: pe ?: 2e. The only possibilities are p = 3 = e or p = 2 

and e < 10. 

We claim that e = ej = 8. If'not, then each Cj equals 2, 3 or 4. Now each 

VVi is an irreclucible faithful symplectic J Ie AvVi)-module of order 22, 32 or 

24. Observe that GL(2, 2) ~ S3 has derived length 2, Sp(2, 3) ~ SL(2, 3)' 

has derived length 3, and every solvable irreducible subgroup of GL( 4,2) has 

derived length at most three (cf. Corollary 2.15). Since niCAWi) = F, we 

have that dl (J I F) S; 3 and dl (J I L) S; 5, contradicting Step 2 (d). ,Thus 

e = el = 8 and FIT'is a faithful irreducible symplectic GIF-module of 

order 82 = 26• 

Since dim(F/T) = 6, it follows from (16.1) that 

6 ?: (J' (1) ?: p( 1) ?: (2/3) . ,u (1) ?: (2 I 3) . e = 16 I 3 > 5. 

Since 8 r /-l(l), we have that p(l) = 8 and a = p is a faithful irreducible 

character of J I If of degree 6. 

Step 4. vVe have'p'G E Irr(G) and pG(1) = XCI). In particular, D = D(pG). 

Proof. If some irreducible constituent 17 of pO satisfies 17(1) < XCI), then 

D I:::; ker(17) and by Step 2 (c), D :::; ker(17) n J =ker(17J) :::; ker(p) = F, 

21!l 

contradicting Step 2( d). So every irreducible constituent of pG has degree 

at least X(l) = fro But, by Steps 1 and 3, 

pC(1) = (3/4) ./,G(1) = (3/4)·8(1) S; (9/8) . X(l) <,2· fl" 

Therefore, po is irreducible and pG(1) ?: X(l). Also pG(1) < B(l) = fr+l, 

whence pG (1) ~,X(I). 

Step 5. Conclusion. 

Proof. By Step 3,,02(J/F) = L Now DS; J, and we let ElF = F(DF/F) 

so that IE/FI is odd. Choose F S; Y ::; J and a primitive (J E Irr(Y) 

such thatp = (JJ. Since by Step 4, f3G == pG E Irr (G) and D = D(pG), 

, Proposition 16.1 implies that D S; Y. If D" :::; ker((J) then D" :::; ker(,BJ) = 

F and D'II' S; L, contradicting Step 2 (d). By Proposition 16.1, D = 
D(fJG) S; D((J), and therefore D((J)" i ker(f3). Applying Lemma 16.4 

to Ute faithful primit.ive cha.racter fJ of Ylker(,B), we SC(~ that tJl(: Hall 2'­

subgroup of F(YI ker(fJ)) is central in YI ker(fJ). Recall that E S; DF S; Y 

and F S; ker(f3). ,Thus 'E· ker((J) I ker((J) is nilpotent of odd order and central 

in YI ker(f3). Therefore, [D, E) S; ker((J). Since D, E ~ J, we 'also have'that 

[D,E) S; njEAker((J))j = ker((JJ) = ker(p) = F. Since ElF = F(DFIF), 

'infact ElF = DFIFis abelian. Then D'S; F, D"' S; ker(f-l) and Dill S; 

ker(p G) = ker( B). The proof is complete. 0 

}6.9 Corollary. HG is solvable, then dl(G) S; 2 ·lcd(G)I. 

'; 

Proof. If, for some I, dl(D~(G)IDT'+l(G)) > 2, then Theorems 16:8 and 

16.5 imply that dl(Dr(G)IDr+l(G)) = 3 and dl(D r+1(G)ID r+2(G)) S; 1 

(where possibly l' + I = Icd(G)I). Since GIDl(G) = GIG' has derived 

length one, it follows that dl(G) S; 2 ·lcd(G)I. 0 

16.10 Exarnples.(a) We note that the assertion of Theorem 16.6 definitely 

does not hold for arbitrary solvable groups. Nalnely G = SL(2,3) has a 

, faithful primitive character X E Irr (G) of degree 2. Thus 

D(X) = n{ker(A) I A E Irr(G) an~ '\(1)= I} = G' ~ Qs 
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and Q~ ~ Z2 =I- 1. 

(b) It is no't known whether Seitz's conjecture dl (G) $ Icd (G)I would be 

best possible. Encouraged by several examples, one might rather believe in 

a logarithmic bound for dl (G) in terms of Icd (G)I. 

Let Pm = Zp WI' .•• WI' Zp be the m-fold iterated wreath-product of Zp, 
- m . 

with PI = Zp. If P is odd, an easy induction argument yields that 

On the other hand, dl(Pm ) = rn (see Proposition 3.10). 

This section is based upon [Be 1], [Gt 2], and [Is 3]. 

§17 Huppert's p-O'-Conjecture 

In this section, we are concerned with the, "arithmetic complexity" of 

character degrees. To be more precise, we introduce some notation._ 

17.1 Definition. for a. na.tura.l n.~l111bcr n, we (as nsua.l) let 7r(n) be the set' 

of distinct prime divisors of nand 7ro(n) = 7r(n) \{2,3}. For a group G, we 

define 

p(G) = {p prime I P IX(l) for some X °E Irr(G)} and 

a(G) = max{I7r(x(l))11 X E Ii-r(G)}. 

Note that p( Gi is a set, whereas a( G) is an integer. Also observe that by the 

Ito-Michler Theorem (13.1, 13.13), p¢ p(G) if and only if G has a normal 

abelian Sylow p-subgr~up. 

For solvable groups G, Huppert has asked the following questioris: 

(1) Is there a function f (illd~pendent of G) such that Ip( G) IS: f( a( G»? 

(2) Does even Ip( G)I :; 2 . a( G) hold? 

Chap. V CllAll,\CTt:H. D8GH.GI~ COtvLPL1~XITY 221 

Before We proceed we show that (2) V!ould be best possible .. 

17.2 Exanlple. Let n be an integer and PI I' •• I Pill Ql, ... , qn mutually 

distinct primes such that Pi I qi ± 1 (i = 1, ... ,n). Let Ei be extra-specia~ of 

order qr and exponent qil Zi cyclic of order Pi and G i = Ej·Zi , where Zj acts 

fixed-point-freely on EdZ(Ei) but trivially on Z(Ei)' Since Gi has character 

_ degrees {1,pi,qd (see [Hu, V, 17.13]), it follows that G:= G 1 x··· 'x G n 
- - 0 

satisfies p(G) = {PI,'" ,Pn, qI,"" qn}and a(G) = n. 

Whereas question (2) is still open, there are several results answering (1) 

in the affirmative (cf. [Is 7], {GI3], [GM 1]). Following [MW 3]', we present 

a proof of the best function f known so far. Vve shall take advantage of the 

results of Section 11. 

1 ~.3 Proposition. Suppose that I(/F(IC) is nilpotent and ,C.::9 Ie Then 

there exists Ii E lIT (C) such that It( 1) is divisible by every prime divisor of 

IC /(F(I() n C)I. 

Proof. Since C j(F(IC) n C) is nilpotent, there is no loss to assume that 

C/(F(I()nC) is abelian. Also F(C) ~ F(I()nC, because F(C)::9 Ie Now 

the abelian group C jF( C) acts faithfully and c.ompletely reducibly on both 

F(C)/<I>(C) and V := Irr(F(C)/<I>(C)), by Theorem 1.12 and Proposition 

12.1. Write V = VI EB·· 'EBVm for irreducible C-modules Vi, Since C/F(C) is 

abelian, IeP'i) = Ce(Vi} for 1 =I- Ai E Vi (i = 1, ... ~ m). Set A = A1 ... Am 

and Ii = Ae E Irr(C). Then fl(i) =-IC/F(C)I = IC/(F(IC) n C)I. 0 

17.4 Lemlna. Suppose that !vI is a normal elemental)' abelian sllbgrollp of 

tile solvable group Go Assume tllat Ai = C c ( !vI) is a completely reducible 

G-module (possibly of mixed cl18.racteristic). Set V = Irr (111) a.nd write 

V = VI EB ... EB Vm forirreducible G-.modules Vi, For ea.ch i, write Fi = yF 
for primitive modules Yi . Assllme tlwt No(Yi)/Co(r'i) is nilpotent-oy­

nilpotent for each i. If 111 .s N ~ G, tllere exists e E Irr(N) -wllOsc degree 

is divisible by a.t least l1alf the primes of 7fo( N j 111). 
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Proof. We may write each Vi as a direct slum of the G-conjugatesof Y j , i = 

1, ... ,71'1,. Consequently, V = Xl ffi··· ffiXn for sllbspaces Xi of V pernluted 

by G (not necessarily transitively) with {YI ', ... , ~Il} ~ {Xl,' .. , X n }. Fur­

thermore, if N j = Nc(XJ, Ci = Cc(Xi ) and FdCi =F(NdCj), then Xi -

is a pri~n~tive, faithful NdCi-module and Nd Fi is nilpotent. 

Let I{ = ni Ni ~ G be the kernel of the permutation representati~n of G 

on {Xl, ... ,Xn }. Since niCi = M, we have niFi/lvI,= F(I(/NI)-::J G/AI. 

Let fI = niFi, so that H/NI = F(I(jM). Observe that I(/Il is nilpotent. 

Set C = I( n Nand F = H n N = C n II. By Proposition 17.3, there 

exists B E Irr (C / M) such that B( 1) is divisible by, every prime divisor of 

IC / Fl· Since C -::J N, there exists T E lIT (N) such that T(I) is divisible 

by E;very prime divisor- of IC / Fl. Consequently it suffices to show there 

exists f3 E Irr(N) with f3(1) divisible by each prime in 7fo(N/C)U7fo(F/M). 

To do th~s, we need just findsome A E V such that 7fo(N : CN(A)) ;2 

7fo(N/C) u 7fo(F/M). 

By Corollary 5.7, we proceed to choose 6.. ~ {X1, .. "XrJ such that 

stabN(6..)/(N n Ie) = stab N(6..)/C is a {2,3}-group. Furthermore, we can' 

a.ssume that 6.. intersects each N-orbit non-trivially. Without loss of gen­

erality, 6.. = {XI, ... ,Xd for s~me i E {l, ... ,n}. Set A = AI···/\/E 11 

for 1l01l~prillcipal Ai E ~Yi. Finally suppose that Q E Syl (N) for a prime q . 

q 2:: 5, and Q centralizes A. Thus Q S; stab N(6..).' But stab N(6..)/C is a 

{2,3Fgroup. Thus Q ::; C. For each i, Fi n C /Ci n C is isomorphic to 

a nonnal ililpotent sub?roup of NdCi, al~d Ni/Ci acts irreducibly on Xi. 

Tl1t~s, for i = 1, ... ,l, Ai is not centralized by a non-trivial Sylow subgroup 

of FinC /CinC. Since QnFi E Sylq(FinC), we have that q t IFinC /CinC] 

for i= 1, .. . ,1. By O~ll' choice of 6.., each Fj/Cj (j = 1, ... ) n) is conjugate to 

some Fi/ei with i E {I, ... , I}. Hence q t IFjn'C/CjnCI for all j = 1, ... ) n. 

Sinc~ ni Ci = M and ni(Fi n C) = F, we,have that q t IF/lVII.' We have 

already seen 'above that Q ::; C and so q t IN/CI.' Thus IN CN"(/\)I is 

divisible by every prime in 7fo(N/C) U 7fo(F/A;f), as desired. 0 

i-
17.5 Lenl111a. Suppose that IvI = Cc(M) is a normal elcmentary aJ)cliAll 
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subgroup of a solvable group G and a completely reducible\G~module (pos­

sibly .of mixed ·characteristic). Assume that G splits over lVI. Then there 

exists X E Irr (G) such tlwt x(1) is divisible by at least balf the primes ill 

7fo(GjM). 

" Proof: We proceed by induction on IMI. Write lVI = MI EB ... EB lVIn for 

n2:: 1 irreducible .G-moduies lVIi . Set Vi = Irr (M j ) so that each Vi is an 

irreducible G-module and V = VI EB ... EB Yrl is a faithful G / M-l:nodule 

by Proposition 12.1. For each i, choose Hi S;' G and Xi an irr,educible 

primitive Hi-module with Xp = Vi. Ii Hd C Hi (Xi) S; r(Xi ) for each i, this 

lemma follows from Lemma 17.4. We assume without loss of generality that 

HI/CHI (Xl) i f(Xl)' . 

Let J( = Cc(Mt) -::J G. Let H be a complement for lvI in G and let J = 
NH'where N = M2 EB· ··EBMn . Then JnM = N. Now JnI( = N(HnI() 

acts on N, and C JnK( N) = N. By induction, there exists T E Irr (J n I() 

~uch that T(1) is divisible by at least half the primes in 7fo((J n I()/N) = 

7fo(I( / M), as (In I()/ N ~ J( / M. Now. J n IC ~ J and centralizes M / N ~ 

MI. Thus J n I( ~ I( J= G and I(jN = lVI/N x (J n I{)/N. 

By the choice of M I , Theorem 11.4 implies that there exists A E VI such 

that 7fo(G/I() = 7fo(G : IC(A)). Set f3 = A . T E Irr(I(). Now Ic(f3) ~­

Ic(A). Thus 7fo(G : Ic(f3)) 2 7fo(GjI(). If X EJrr(GlfJ), then a.s ]( -::J G, 

7fo(X(l)) 2 7fo(G/I() U 7fo(i(l)). Since T(l) is divisible by at lea.st half ~he 

primes in 7fo(I(/M), certainly X(l) is divisible by at least half the primes in 

7fo(G/M). . 0 

1~.6 Theorelll. HG is solvable, then t:llere exists f3 E Irr(G/«J!(G)) such 

that f3(I) is ~ivisible by at least half the primes'in 7fo(G/F(G)). 

Proof. Apply Lemma 17.5 with G/«J!(G) and F(G)/<I>(G) in the role'ofG 

and M, respectively. Note that Gaschtitz's Theorem 1.12 guarantees the' 

hypotheses of Lemma 17.5 are satisficd~ 0 
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As already formulated above, Ito's Theoren113.1 for solvable groups G 

states p rf:. p( G) if and only if G has a no]:,mal abelian Sylow p-subgroup. 

Thus p E p(G) if and only if p I IG/F(G)1 or F(G) has ~ non-abelian 

Sylo~ p-subgroup, i.e. p E p(G) if and only if p I IG/Z(F(G))I. We let 

Po(G) = p(G) \ {2,3}. 

17.7 TheorelTI. Let G be solvable. 

(a) There exists X E Irr (G) SUell tllat X(l) is divisible by at least one 

, third of tbe primes in po(G). ' 

(b) Assume whenever r is a prime and Or( G) is non-abelian, then also 

r IIG/F(G)I. Tllen tlJere exists X E Irr(G) with X(l) divisible by 
at least one half of tl]e primes in po( G). 

Proof. Let 6 be the set of those prirries. s for which 0 s( G) is non-abelian 

and s t IG/Os(G)I· Now F(G) certainly has an in'~ducible character <p 

whose degree is divisible by all s E (3.' Hence r E 'Irr (Glcp) also satisfies 

s I X(l) for all sEt? By, Theorem 17.6, there exists (3 E Irr((i) with 

;3(1) divisible by at lea~t half the primes in 7fo(G/F(G)). By the comments 

preceding this theorem, p( G) = 7f( G /F( G)) U 6, holds. 

Under the hypothesis of (b), 6 = 0 and we just let X = (3. To prove (a), 

we let X = f3 if Ipo(G)I/3 ~ 16 \ {2, 3}1, and let X = Toth'erwise. 0 

Vie reformulate Theorem 17.7 in ,terms of Huppert's p-O'-conjecture. The 

summand "2" refers to the role of {2, 3} above. 

17.8 Corollary. Let G be solvable. 

(a) Ip(G)1 S; 3· O'(G) -/- 2; and 

(b) Ip( G)I ::; 2 'O'( G) -/- 2 if r IIG /F( G)I wllenever Or( G) is non-abelian. 

17.9 Remarks. (a) Fo~ non-solvable groups G, it is still unknown wheth~r 

there exists a function f according to Hupp'ert.'s question (1). Question (2) 

, ! 
;' 
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however, in general has a negative answer, e.g. /p(As)/ = 3 and O'(As) = i., 
U sing the classification of finite simple groups, the following bound has heen 

established by Alvis and Barry [AB 1] and Manz, Stasze~ski and Willems' 

[M$W):, 

Let Gbe simple. Then Ip( G)I ::; 3 . 0'( G). 

It seems reasonable to ask whether this estimation holds in general, or: 

whether ·even a. factor 2 and an additive' constant is the "right" a.nswer. 

(b) Returning to solvable groups G, the natural que~tion arises whether, ' 

~lso ell (G) can be bounded in terms o( 0'( G). To see~hy this is not the', 

case, we let p, q be distinct primes and consider the class Q: of {p, q }-groups.' 

If G E Q:, then clearly O'(G) ::; 2 hol~ls. On the other hand, itis well-known 

that within <r there is no universal bound for t:he derived lengt.h (nor'everl 

for the nilpotency lengt.h). 

The following result (cf. [MS 1]) may serve as a substitute. It aga.in relies 

on::Theorem 1.2.9. 

17.10 Theorenl. Let G be solvable. Tllell G has ?l characteristic series 

. witb the follOlviIlg properties: 

(i) N~ = 1 and A ::; No for the norma.l abelian Hall p( G)'-subgroup A . 

of G (A exists by Theorem 13.1);, 

(ii) (NZi+l/N2i)' = 1 fdr i = 0, ... , k - 1; . 

(iii) 17f(NzdN2i - 1 )!::; O'(G) for i = 1, ... , k; a.nd 

(iv) k S;2 . 0'( G). 

! ' 

Proof. We argue by induction on s := O'(G). If s = 0, then No = G is:' 

abelian and k = O. Vie may therefore assume that s > 0 and choose iterated 

comm11tator snbgroups N/A:= (G/A),(j) and Jt.1/A:= (G/A)Ci+l) SHch that. : 
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a(N) = s but, a(lVl) < s. By induction, there exists a characteristic series 

1 ::; No ::; NI ::; N2 ::;'. ~ . ::; N2/-1 ::; N21 = M' of M with 

(i)' N~ = 1 and A ~ B ~ No for thy normal abelian Hall p(A1)'~ 
subgroup B of M j 

(ii)' (N2i+I /Nzi)' = 1 for i = 0, ... )'Z - 1; 

(iii)' 17r(Nzd~Zi-dl ~ a(M) < 8 for i =,1, ... ,I; and 

(iv), I,::; 2· a(M) ::; 2(8 - 1). 

By their definition, Nand M ~re characteristic in G and N / M is abelian. 

We may choose '1jJ E Irr(N) with 17r('1jJ(I))1 = s and we denote the set 

of prime divisors of '1jJ(I) by 7r. Let X E Iri- (Gh&)· Since '1jJ(1) I xU), 
each prime divisor of XCI) belo~gs, to 7r and X(I)/'1jJ(I) is a 7r-nmnber. By 

Theorem 12.9, G / N has an q,bellan Hall 7f'-subgroup. Consequently the 

7r'~length of GIN is at most 1 by Lemma 0.19. We extend the above char­

acteristic series of J'\Il to a characterist,ic series of G hy-setting N Z1+1 = N, 

NZ1+Z/N21+1 = 01f(G/NZ1+d', N21+3/N21+Z = 01f,(G/NZ1'+Z) and N 2/-H = 
G. Then G/NZ1+3 is a 7r-group. With k := Z + 2, properties (i)-(iv) are' 

satisfied. 0 

While a( G) is a measure for the number of different prim~s in the charac­

ter degrees of G, T(G) willme,asure the maximum multiplicity of the primes 

in the character degrees of G. 

17.{1 D~finition.' For a group G and a prinie p, recall the definition of 

ep(G) as the smallest non-negative integer e such that pe+1 f X(I) for all 

X E Irr(G) (see 14.1). We set' 

T(G) = max{ep(G) I p IIG\}. -

Observe that the group G of Example 17.2 satisfies T( G) = 1, but Ip( G) I = n. 

Therefore we cannot expect to estimate Ip( G)I in terms of T( G). We finish 

this section wi th a re.§ult of Leisering and Manz [LM 1]. 

17.12 Theorem. Let,G be solvable. Then 

dl (G) ::; 2· (T( G) + log2 T( G) + 3). 

.r,: 

Proof. For a prime divisor p of IGI, we denote by T'p the p-rank of GjOp( G), 
and by 7' the rank ofG/F(G). It follows from 14.12 (c) that Tp :S 2·ep (G) and' 

therefore T' = max{rp} ::; max{2 . ep(G)} = 2· T(G). vVe set G = GjF(G). 

By- G aschiitz's Theorelll' 1.12, F( 0)/ <1>( G) is a fait.hful cOlllpletely reducible 

O/F(G)-module (possibly of mixed characteristic). Write F(G)/<1>(G) = 
VI EB .,. EB Vn with irreducible G-modules Vi and Ci = Cc(Vi). Since l' ~ 

. 2T( G), also dim(Vi) ::; 2'T( G) for i = 1, .. '. ,n. It thus follows from Corollary 

3.12 that 

dl(G/Ci)::; 2 .10g2(2. dim(Vi)) ~ 2 ·10g2(4. T(G)). 

Since G /F( 0) ;S fL G /C'i, we also have dl (G /F( G» ::; 2· log2( 4 . T( G». 

Let P equal Ope G) or Op( G), respectively. Then P is normal in G or 0, 
respectively, awl, Clifford's Theorem implies that T(P) :S T( G). Sinn' r is a 

p-group, it follows'that Icd (P)I ~ T(P) + I, and Taketa's Theorem (cf. [Is, 

5.12]) yields ell (P) ::; Icd (P)I ::; T(P) + 1 ::;T(G) + 1. 

. Altogether, we obtain 

dI(G)::; dl(F(G») + dl(F(G)) +dl(G/F(G») 

::; 2· (T(G) + 1) + 2 ·log2(4· T(G») = 2· (T(G) + logz T(G) + 3), 

as required. o 

'vVe note' that Theorem 17.12 is far a,,;ay from being best possible. If e.g. 

T( G) = 1 (i.e. all character degrees are squarefree), then the above estimate 

yields dl (G) ::; 8. Best possible however in tilis case is dl (G) ::; 4 (~ee (HrvI 

1 D. 

§18 The Character Degree Graph 

We con~truct a graph f( G), whose vertices are th~ elements of p( G), i.e. 

those primes q that divide the degree X(I) of some irreducible charact'er 
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X E Ir1' (G). We draw an edge between distinct q, :, E T( G) if and only if 

q, I X(I) for some X E Irr(G). A distance function d(q,s) =, dG(q,s) is 

defined in the usual way: 

d( q,s) ~s the length of the shortest path between q and s. 

In particular, d(q,q) = 0, d(q,s) = 00 if q and s lie in different connected 

components and d(q,s) = 1 if and only if q i= sand qs I r(l) for some 

r E Irr (G). If A is a cQ~lnected component of f( G), then the diameter of A 
is defined by , 

di am ( A) = max { d ( q , s) I q, SEA} . 

Finally, 

diam(f(G)) = max{diam(A) I A a component of f(G)}. 

The number of connected components off( G) will be denoted by n(l'( G)). 
As usual, ?T(C) is the set of prime divisors of ICI. 

We wlll show that there are very limited configurations for th~ graph 

f( G). If G is solvable, then the number of components of f( C) is at most 

2 (Theorem 18.4)~ If f( C) has twocOmp()nellt~, t.hen both c.~mponellt.s are 

re.gular graphs. Ivlore will be said about such groups in the next section. 

With further work, we show (Theorem 18.7) that vyhenever 6 ~ f( G) and 

16 1 ~ 3, there exists X E Irr (C) with X(I) divisible by at least two distiilCt 

primes in 6. For 161 ~ 4, 'this was proven in [MWW]. Modifications by 

Palfy [PI 2] improved this to /61 ~ 3. We will use Theorem 18.7 to prove 

foT solvable G that diam (f( G)) :::; 3. We will discuss graphs of non-solvable 

groups at the end of Sectio~s 18 and 19. 

18.1 Len1111a. Suppose tllat G /F( C) is abelian. Then tllere is X E Jrr (C) 

such tilat XCI) = IG : F(G)I. 

Proof. As a consequence of Gaschiitz's Theorem 1.12 a.nd Propositioll 

12.1', Irr (F( G)/ q,( C)) is a faithful and completely ~'eclucible G /F( G)-module 
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(possibly in different characteristics). Write 

'with irreducible G-moclules Vi and set Ci = CG(Vi ). Since G /Ci is abelian, 

G/Ci act's fixed-point-freely on Vi. Tat-:e 1 i= Ai E Vi (i = i, ... , n). Then 

I(Al .. , An) = n I(Ai) = n Ci = F(G) 
i 

and X := (A1 .. , An)G E Irr (G) has the desired property. o 

18.2 Le111111a. Let N ~ G and NI/N = F(G/N). Suppose that G/AI is . 

nilpotent. T1Hin we have 

(a) q E f(G) for all q E ?T(C/lvI) and 

d(q, q') = 1 for different q, q' E ?T(G/AI). 

(b) If v E f( G) with v t IG / NI, then eitller 

d( v,}J) = 1 for some p E ?T(1II/N) n f( G), or 

d(v,q) = 1 for all q E ?T(G/M). 

Proof. (a) Repla.cing G by the complete preimage of Z( G / 111) in G, we 

may assume that C / kf is abelian. The assertion now follows from Lemma 

18.1. 

(b) Let X E Irr (G) with v I x(1)· Sl~ppose p t X(l) for all p E ?T( 111/ JV). 

Let Q = {q'l qprime,q t xU)} and H/1I1 E HallQ(G/NI). Note,that 

H ~. C. Now choose 1P E Irr(H) with [XH,1p] i= O. Then 'ljJN E Irr(N) 

, and v I 1/)(1): By Lemma 18.1, there is ;. E Irr(H/N) whose degree is 

divisible by all q E ?T(Jr/1I1). Then 'Lemma. 0.10 implies TIl) E hr (H) and 

vq I r1j;(I) for all q E ?T(H/1I1). Now the degree of p E Irr(GITlp) yields. 

d( v ,q) = 1 for all q E 7r( Ii / A1)and the degree of X leads to d( v', q) = 1 for ' 

all q E ?T(G/ H). 0 
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18.3 Lenuna. Supposetilat N ~ G is maximal SUell that G/N issolvable 

but n?n-~beJian. Tllen one of tile f~llowing two cases Occurs. 

(Q GIN is a non-abelian p-group and d(v,p) S; 1 for all v E r(G); or 

(ii) G/N is a Frobenius group. The Frobenius kernel lvf/N is all el~men­
tary abelian J'-group and G / M ,is abelian. Furthermore if v E f( G), 

then d(v,1') ::; 1 or d(v, q) ::; 1 for allq E 7f,(G/l1,1I). 

Pro~f. IfG/N is a p-group and X E Irr(G) satisfying P t x(I), then 

XN E Irr(N) and o"x E Irr(G) for all 0" E Irr(G/N) by Lemma 0.10. 

Conclusion (i) then holds. We may assume that G/N is not a p-group. It 

follows from the hypotheses and Lemllla 12.3. of [Is] that G / N is a Frobenius 

group whose Frobeniu~ kernel AI/N is an elementary abelian T-group with 

1Vf/N = (G/N)' = F(G/N). Conclusion (ii) follows with help of Lemma 

18.2 (b). 0 

Our first result requires solvability of only a sma.ll factor group of G. 

18.4 Theorenl. Assume t11at G has a Jlon-abeli~.n solvable factor group .. 

Then one of the followirig occurs. 

(i) n(I'(G)) = 1 and diam(f(G))::; 4; ~r 

(ii) n( f( G)) = 2 and diam (f( G)) ::; 2. 

Proof .. Choose N ~ G maximal su.ch that G / N is solvable but non-abelian. 

If G / N is a p,group, Lemma 18.3 gives that d( v,p) ::; l.for all v E f( G) 

and thus n(f( G)) = 1 and dia~ (f( G)) ::; 2. We may therefore assume that 

G/N is a Frobenius group, with kernel1l1/N ~ ·G/N an elementary abelian 

I-group, and G Ilv! is a Q-group for a set of primes Q .. Furthermore, if 

v E f( G), we haved( v, I) ::; 1 or d( v, q) ::; 1 for all v E Q. Thus n(f( G)) ::; 2 

and if f( G) l~as 2 components, its diameter is at most 2. AssUllle f( G) has 

1 component. We may assu~e that I E f( G), since otherwjse f( G) has 

diameter at most 2. Letqo EQ and let 

be a shortest path of length d between qo and 7'. Assume that d .2: 3 

and choose 1/J ~ Irr (G) such that tl t2 I 1P(1) , but qo and I do not divide 

~(1). Since GIN has an irreduciblecharader divisible by every q E Q and 

. d(t2' qo) = 2~ t2 ~ Q. Let Q/M be a Sylow qo-subgroup of G/Jt.1 and let r 

be an iiTeducible const~~uent of 1/JQ. Then t2 1 r(l) and rN E Irr (N). Now 

Q/N has an irreducible charader fi,with qol ,8(1). Therefore,8r E 1rr(Q), 

qot2 l,8r(l), and Q ~ G. ,Thus d(fjo, t2) ~ ~, a cO~ltradiction. Hence 

d(q,7') ::; 2 for all q E Q .. If v E f(G), we have either d(v, q) ::; 1 for all 

q E Q or d(v, T')::; 1. Hence diam(f(G)) ::; 4. 0 

If Gis adually solvable, we may strengthen both (i) ~nd (ii) (see Corollary 

18.8 below). This however requires some very technical preparations. The 

next result we are airr~ing at is that if 7f' ~ f( G) with 17f I 2: 3, t.hen d(PI q) = 1 

for some p, q E 7f (Tl·leorem 18.7). 

18.5 Lelnn1~.· Let G be ~olvable, and 7f be a non-empty set of prime divisors 

of G. Suppose that V is a faitbful G-module and IVI = pm for some prime 

p. Assume tbat C c ( v) contains a HaJl 1f-subgroup of G for each v E V. 

Furtherm~re suppqse that V N is homogeneous for all N char G. Then 

(a) TllCre existsxE Irr(G) such that q I X(l) for all q E7f. 

(b) If G is an {s} U 7f-group for some s ~ 7f, then 17f1= 1 and a Hall 

i-subgroup of G 11BS prime order. 

(c) If IVI f= 32
, then each prime in 7f divides m. 

p'roof. Tl~e hypothesis on centralizers implies that 0 71"( G) centralizes V 

and so 07l"(G) = 1. In particular, F(G)f= lis a7f'-group. Note, .without 

loss of generali ty, that we may assume G = 071"' ( ~). Corollary 10.6 applies 

here and we may conclude that V is all irreducible G-rnodule and one of the 

following occurs: 

(i)G ~ f(V) (lncl G jF( G) is cyclic; 

(ii) IVI = 3\G ~ SL(2, 3), and 7f = {3}; or 

(iii) IVI = 26
, 7f_ = {2}, IG /F( G)I = 2, and IF( G)I = 33

• 
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In cases (ii)and (iii), all three conclusions (a), (b), arid (c) hold. We thus 

assume that G :::; r where r = f(V). 

Since r' is cyclic, so is G' ; Sil~ce 011"' (G) = G, we have that F( G) = G' is a 

cyclic ?T'-group and G IF( G) is a cyclic ?T-group. Because r o(V) n G :::; F(G), 

IGIF(G)I Ilr(V)/ro(V)/. Hence /GIF(G)I I m,' p~oving (c). By L~mma 
18.1, there exists X E Irr(G) with X(I) = IG/F(G)I, proving (a). To prove 

(b), we may assume that F( G) is a cyclic s-group for a priine s. 

Let 5 :::; F( G) with 151 = s. Because F( G) = Cc(F( G)) is a cyclic 

s-group and G/F(G) is an s'-group, it follows that Cc(5) = F(G). Conse­

quently, whenever F( G) < H ~ G,H is a Frobenius group. Becanse H :51. G, ' 

ea.ch 0 f. v E V is centralized Ly a HaJl ?T-subgroup of H. But CF(C)( v) = 1 

and H/F(G) is a ?T-group. Hence CH(V) E Ha1l1l"(H). If RE Ha1l1l"(H), 

then IV#I = IC v (R)#II Ha1l1l"(H)I= IC v(R)#IIF(G)I. 

In particular ICv(R)1 is independent of ,the choice of II for F(G)·< H ::; 

G, and R E Ha1l1l"(H). But dim(Cv(R)) = dim(V)/IH : F(G)I by Lemma 

0.34. T~lus it follows that G /F( G) has prime order and I?TI = 1. 0 

18.6 Le111111a. SllPpose tlwt' V is fillite faitllflll irredllcihle G-modllle for a 

solva.ble group G. Assume tlwt ?T is a. non-empty set of prihJe divisors of lei 
and Cc( v) contains a Hall ?T-subgroup of G for eaci] v E V. Then 

(a) There exists X E Irr(G) sud1 that 

q I X(I) for all q E?T. 

(b) If G is an {s} U ?T-group for some s rJ. ?T, then I?TI = 1. 

Proof. Observe that if J( ~ G, then C 1(( v) contains a Hall ?T-slibgroup of 

Je In particular, 011"( G) centralizes V, whence 011"( G) := 1 and F( G) i~ a 

?T'-group. 

We may assume that I?TI ~ 2, since otherwise (b) is trivial and part (a) 

follo~vs from Ito's Theorem (see Theorem 13.1). Let H = 01l"'(G) and write 

Chap. V CHARACTER lJGlilU:~I~ CO~lPLEXlTY 

V/1 = TV
1 

E9 ... E9 TiVt for (possibly isomorphic) irreducible H -lJ1ouules lVi.·· 

Let Di = C J-l(Wi), so that ni Di = 1 and the Di a.re G-conjugate. Now 

IH /Dil is divisible bJ:' every prime in?T. Suppose -that H < G,' By tl~e 
. inductive hypothesis applied to the action of HI Dl on WI) we have that 111 

(b), I?TI = 1 a~ld in (a) there exists T E Irr(H) with q I 7(1)for all q E ?T. 

Part (a) is then completed by choosing XE Irr (GIT). We thus assume that 

G = 011"' (G). -

By Len:una 18~5, the result is valid if V N is quasi-primitive. Choose C :sJ G 

Ihaximal 'with respect to Ve not homogeneou~. Since 011"/ (G) = G, we will 

now fix a prime q E ?T with q IIGICI. Next apply Lemma 9.2,and Theorem 

9.3 to con dude that 

for homogeneous components Vi of Ve that are faithfully and primitively 
. , 

permuted by G / C. Also 

(1) n = 3, 5 or 8; 

(2) q = 2, 2 or 3 (respectivelY)j 

(3) G /C is isomorphic to D 6 ,. D IO or Af(23
) (respectively); 

(4) C/Ce(Vi) acts 'transitively on Vi\ {OJ; and· 

'(5) ifq ,= 2, 'then. char V = 2. 

(As usual Dm denotes the dihedral group of order 1'11. Recall'tha.t Ar(23) 

has'a unique mi~ima.l normal subgroup B. Also Ar(23
)/ B is non-abelian of 

order 21 and IBI = 8.) 

To prove (b), assume that G is a ?TU{s}-group. The last p~ragraph shows 

that IG/GI is divisible by exa.ctly one prime in?T. Since Ar(23) has order 

2 h 1, GIG ~ D orD and s = 3 8 . 3 . 7, we thus assume th~t q = = c ar ~ , - 6 10 .. 

or 5. Now (4) above and the hypothesis that each v E V is centra~ized by a 

'Hall ?T-subgroup imply that IVi I - 1 = sj f()r some j. Since $,= 3 or 5 and 

char (Vi) = 2, we must have IViI = 4 and s ~ 3 by Proposition 3.1. Then 

C /CC(Vi) is a {2, 3}-group and G is a {2, 3}-grotlp. This pl~oves (b). 

\Ve set C j = CC(l'i) and note ni Gj = 1. Since the' OJ (I,re G-conjugat.e, 
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every prime in IT, except possibly q, divides IC / Cd. Observe that the h _ 
potheses imply that C ( )/CI ' Y C W 1, contams a Hall IT-subgroup (=f: 1) of G/C 
for each E V S' G/G ' 1 tv 1· mce 1 acts transitively on V;1 \ {OJ G/G t ' . . .. ,," , ,1 ac s quasI-
p~1mItIvely ~n V1 • No:v Lemma ]8.5 implies that there exists l' E Irr(C) 

With C] :::; ker( 1') and 1'(1) divisible by every prime' of 7r dividing ICI S· 
C G . . . mce 
~ ,we may assume that q f ICI. Let 7ro = 7r \ {q} and recall that q = 2 

. o~. 3~ ~e have that 7ro =f: 0, no prime in 7ro divides IG/CI and 2 ~ 7ro. If 

I 11 - 3 , then C /Ci would be a {2, 3}-group, which is not possible because 

q :::; 3,' q f ICI, alld 07r( G) = l. By Lemma 18 5 (c) '" . . . , everypnme III 7ro 
diVIdes m where IV I - In 1 'V AI' 

, , '. .. 1 - P, ' P = C lar. SO, no divisor of pm - 1 is in 
7ro, by tranSItIVIty. As 2 ~ 7ro, it thus follows that r~ > 3 rn -I- 4 "nd' 

m-l- 6 -) -r- c. 

P -r- 2 . By Corollary 6.6, we have a series C· <: R· < F· < C f 1 ," 1, 1 _ 1 _ 0 norma 
subgroups of C such that p·/C· = F(C/C')' " l' , 

. .' I I I IS a cyc IC 7r -group, C / Fi is 
cyclIC, Ri/C j IS a Sylow 7'-subgroup of,C/C· for a ZSI'gm ' d . ,d" 

1 on y pnme IVIsor 

I of pm -I, and Fi/Ci = Cc/ci(Ri/Ci). We let P = ni Fi and R = n. R. 
, Then F = F(C) - C (R) R <J G" , , 11' - C , _ IS a Sylow I-subgroup of C and both R 

and F are abelian (see Proposition 9 5) Al 'F',· , ' . . . '. so IS a 7r -group, as F( G) IS. 

Let C j ::; Mi < Ri with IRi/Md = l' and let M = n· M· t'} t 
R/lvI' 1 I I) .so la 

. IS e ementary abelia:n. Since Ri/ C i is cyclic, the 1I1j are all the G-

conJu"gates of lvII and hence 111 ~ G. Since l' J. IC/F·I tl ' R./M.· . f . 1 ,I "I, ~en I I IS a 
<ut lful C I Pi-module. F\trthermore (lII n,R)/ lI1' . C b' 

. • ' I 11 IS a -su module of R/ lvI 
of cod~menslOn 1, and R/(MinR) is C-isomorphic to Ri/1I1i. It follows that, 

R/A11S a faithful C/F-module and a,s l' J.IC/FI R/lI1' - A ' , . I ) lV" - 1 ffi ... EB Ai 
where each Aj is C-isomorphic to R·/M· £. " 

, . I I lor some 'l. 

. vVe next show that R/ lvI is in fact a faithful G / F-module. Since C / Facts 

faIthfully on R/lvI we have that C n C (R/M) - F' ' d 1 . 
" .' , ,'. . G - an t lUS Co(R/M) 
centralIzes C / F. SInce 111 I=- 2 or 4 and since C > F ( -I- 0) L . as 7r 0 -r- ,eInnla 

9;10 YIelds tl~a.t C~F = Ca/F(C/F). Thus Ca(R/M) :::; en Ca(R/M) = 
F. So Rllvl IS a faIthful G I F-m~dule. ' 

We,claim that for each 1 =I- T E In (R/A1) Ie· I ,( )1' d' . 'bI b ' , . . . ' . C l' IS IVISI e yevery 
prIme,' 111 7ro In l)arti 1 - tl' , . . 

" c, eu ar) we can ,len a.ssume that q {I G : I c( l' ) I for all 

Chap. V 

l' E' 1rr (RI lvI), since otherwise the conclusiOli (a) of the lemIna is satisfied 

with X E hI' (Glr). For this claim, we write l' ~ T1 X •.. X 1'[ and observe 

that Ic( 1') = ni Ic( ri): Without loss of generality, T = 1'1 X 1 x . , . x 1 and 

,1 I=- 1'1 E Irr(Ad, Since Al is C-isomorphic to, say, 'nt/lvII, fc(r) = Fl' 

Since C I FI is divisible by all primes in ,7ro, the claim holds. 

, By the last paragraph, q f IG : fa(r)1 for all l' E Irr(RIM). Now 

Irr (RIM) is a faithful GI F-module.' If q = 2, then I = 2 by Lemma 9.2. 

This is a contradiction, because q t ICI.Hence q = 3. Since eachprime in 

7ro 1=-,0 divides 1H and 2 ~7ro, either m ~ 7 or 1n = 5. In particular, the 

ZsignlOndy prime divisor l' of ]J m - 1 is not 2, 3, or 7. Thus l' t I G I C I and 

1'tIG/FI· 

We 110W have that q = 3 and GIG ~ Af(23
): Let S = Nc(G t ) 2:: 

Na(VI ) > C. Then SIC ~ Af(23 ) or' f(2 3
). Let D' =Cs(Vd so that 

D n C ~ C 1 and SID acts transitively OIl VI \' {OJ, because C :::; S. Recall 

that IC/Cli is divisible by all primes in 7ro.By Lemma 6.5, we ma.y choose 

a fai thful linear A E Irr (FI I C}) such that ACE Irr (C) and hence A C (1) 

is divisible by e~ery prime in 7ro. Since AC has kernel C l , fa(/\C) ::; S. 

Furthermore, {A C} -~ In'-( CIA). Thus it suffices to show that there exists 

5 E Irr(SI/\) = Irr(SIAC) with 315(1), i>ecause the~ 5(1) is divisible'by all 

prilnes in 7r' and 5c is irreducible. 

Since D FI! D ~ Fd C}, A may be considered as a linear cha.racter of 

,D FI I D :::; F( SID). ,But SID acts transi tively on VI \ {O}, and thus applying 

Lemma 6.5"A extends to A*'E 11'1' (F(SID)) with (A*)S irreducible. Nole 

that for v = (x,O, ... ,O) E ~\ {OJ, we have Cc(v)::; Nc(VI ):::; s, hence 

each x E VI is centralized by a Sylow 3-subgroup of SI D. Thus 3 t IF(SI D)I 

and we obtain either 3 I (A *)S(l) or 3 liD ICd· By the last paragraph, 

we are done in the first ca~e and we thus assume that 3 I I D I C 11· Now 

De/e ~ SIC and SIC ~ Af(23
) or f(2 3

). Since 3 IIDCICL.DC = S 

and SIC1 = CIC1 X DIC}. Since DIC} ~ SIC, there exists p E 1rr(DICI ) 

with 31 p(l). Now 5:= AC x p E, hr(SI/\) and 315(1). 0 



THE CUAIlACTr.m DECHCE GHAPil 
0CC. 18 

18.7 Theoreln. Let G be solvable and let 7r be a set of primes cont'ained 

ill T( G). Assume t11at 17f1 ~ 3. Then tllere exist distinct u, v E 7f s~ch that 
uv r x(1) for some X-E Irr(G). 

Proof. We proceed by induction on IGI. Let F = F( G). Now 

f( G) = {p I G does not have a normal abeliaIiSylow p-subgroup} 

= {p I p divides IG/FI ot Op(G) is non-abelian}. 

Note that F'::; <I>(G) ~ F and F(G/W(G)) = F/W(G) (see Theorem 1.12). 

Arguing by ~nduction on IGI; we may assume that 

Step 1. If P E Sylp(F) for a prime p, then either 

(i) P is elementary ab~lian, or 

(ii) p E 7r, pi IG/FI, and pI is a minimal normal subgroup of G. 

Step 2. If AI is a minimal normal subgroup bf G, then G / All has a noi-inal 

abelian Sylow s-subgroup S / All for some s E 7r. Furthermore, S is either a 

non-abelian s-gr'oup or M is a non-trivial S/M-module. 

Proof. Arguing by inductioll, we may assnme. that there is some s E 7r such 

that s rt f(G/jI,l). Thus G/jI,l has a normal abeliaI1 Sylow s-subgro~p S/]III. 

Since G does not have a normal abelian Sylow's-subgroup, S is non-abelian 
and S' = jl,1. This step follows. 

Step 3. If F is abelian" then 'F is the unique minimal normal subgroup of 
G. 

Proof. If F is abelian, then w( G) = 1, by Step '1. By Theorem 1.12, F is 

a completely reducible G-module.For this step, we may assume t.h~re ~xist 
distinct. ininimal normal subgroups lvI, N of G. By Step 2, G/A1and C;/N 

have a normal abelian Sylow s-subgroup Slid and a normal abelian' Sylow 

t-subg~oup T / N, respectively, for primes s, t E 7r . (We do not assUl~e that 

sand: t are distinct!) Furthermote, Sand T a.re non-abelia.n. Sirice F is 

:,;~ Clmp. V 

:li· 
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E 'abelian, s f IMI and t f INI· Now M N =M x N. Let 1 =/= f-l E lIT (jI,l) and 

1 1=/= v E Irr (N). Choose 8 E Irr (STIf-lv). Now It is a constituent of 8M and 

~i thus there exists a E Irr (Sill) wit.h [Os, a] i= O. Since 1\1 is a non-trivial 
:~h 

iJ,~ module for the s-group S/M ~ G/M, and 1\1 is an irreducible G/M-niodule, 

k C M (S/A1) = 1. Since J-l f. 1, s I a(l) and s I 8(1). Likewise, t I 8(1). If 

X E Irr(GI8), ther). st I X(l),'sihce ST ~ G. The conclusion of the theorem 

is satisfied unless s = t. Let So E Sy13(G) and observe S= SaM, T = SoN, 

and So is abelian. Now jl,1So/M and MN/M are normal in G/lv! and so 

[So,MNj :::; jl,1. Likewise [So,MNj :::; M n N = 1. Thus S = So x 111 and 

G have a normal abelian Sylow ~~subgroup, a contradiction to s E f( G). 

Step 4. F is non-abelian. 

Proof. By Steps 2 and 3, we can assume that F is the unique minimal 

normal subgroup of G and G / F h~s a normal abelian Sylow s-subgroup 

S / F =/= ) for a prime s E 7r. If 1 =/= ), E Irr (F) and T E' Irr (SI)'), then 

s I T(l). Hence s I ,8(1) for all f3 E Irr (GI),). Thus we may assume "that 

lG: Ic(),)1 is'not divisible by each prime in 7r \ {s}. Applying Lemma 18.6 

( a) to the action of G /F on F, there exists , E Irr ( G (F) such that ,( 1 ) 

'is divisible by all primes in 7r \ {~}; Since 17r1 ~ 3, the conclusion of the 

theorelTI is ~atisfied. 

Step 5. F is a non-abelian Sylow 7·.;subgroup of G for some l' E 7r. 

Proof. Now F has an irreducibl~ character whose degree is divisible by every 

prime p f~r which the Sylow p-subgroup of F is J?:on-abelian. Thus by Steps 

1 and 4, there is a unique p~ime l' for which F has a ~on-abelian Sylow 

1'-subgroup R. Furthermore, r E 11" andR E Sy1r(G). For this step, we may 

assurne that G has a minimai normal subgroup M wi,th !IIi R. By Step 2, 

G / jl,1 has a normal abelian Sylow s'-subgroup S / M for some s E 7f and S ~s 

non-abelian. Since jl,1 i. R, the uniqueness of r implies that s f IMI: Hence 

a Sylow s-subgroup of G is abelian, whence s i= r. Now RS = R x S :9 G 

andRS has a character of degree divisible by rs. In this case, the conclusion 

of the t.heorem is satisfied. This step follows. 
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For convenience, say 1f = {r,s, t}. Also let SE Syls(G) and r E Sylt(G) 

. sllch that ST = T S. By Steps 1 and 5, F' i~ the unique minimal normal 

subgroup of G. Let C = Cc( F') 2: F. 

Step 6. 

(i) vVithout loss of generality, S :s; G and t f IGI. 
. (ii) SF/F is a normal abelian Sylows-subgroup of G/F. 

(iii) For alII f-. a E In(F'), IG: Ic(a)1 is coprime to st and Ic(a)IF 

contains normal abelian S.Yl~w s- and Sylow t-subgroups. In particu­

lar, ST is an abelian Hall {s,t} subgroup of G. 

Proof. Let 1 f- a E Irr(F') and observe that 1'15(1) for all 5 E Irr(Fla). 

Thus 1" 1 a(l)for all a' E Irr(Gla). ·Consequently, Ic(a) conta~ns a Hall 

{s,t}-subgroup of G for all a ~ Irr(F'). Applying Lemma 18.6 (a) we may 

ass~me that GIG is;divisible by at lilost one prime in 1f \ {r} = {s,t}. 
Without loss of generality, S is co~tained in G. . 

Since G IF is an r'-group, there exists j3 E hr (Fla) that is invariant in 

, C by Lemma 0.17 (d). Again by coprimeness, ;3 extends ~o f3* E Irr (C). As 

'j3* E Irr(CIj3) for.all, E Irr(G/F) and 1" I j3(l), we have (8t,'(1)) = 1 for 

all e E Irr(G/F). ,Thus GIF has no:rmal abelian Sylow subgroups·'SFIF 

and (T n C)FI F. Clearly, SFI F then is a normal abelian Sylow subgroup 

of GIF. 

By Lemma 18.1, there exists T} E Irr(C) such that 17(1) is divisible by all 

prime divisor~ of IF( G I F)I. In particular, s 1 T}(1) and we may assume then 

that t f IFCCIF)I· But C/F has a normal Sylow t-subgro~p. Thus t f ICI. 

Since (IIc( a)1 FI, IFI) = I, the same argument as in the previous paragraph 

shows that Ic(a)IF has normal abelian- Sylow s- and Sylow t-subgroups 

and (st, IG : Ic(a)1) = 1. 

Step 7. If_F ~ N ~ G with st IINI, then N = G. 

Proof. Since F = F(N), we have 7r ~ r(N). If N < G, the tl~eorem follows 

by induction. Thus N = G. 

Step.8. GI F Sol F x HI F for So .- SF and some H <l G. Also, 

ISo/ FI = lSI = s. 

·Proof. Now SolF <l G and ST:S; Ca(S) by Step .6. ThusO{s,t}(GIF).:S; 

Ca(So/F). By Step 7, So/F :s; Z(GIF). Thus GIF = SFIF x HIF for 

some H :s; G. Now Sol F ~ S since s f IFI. Finally Step 7 implies that 

ISo/FI = s. 

Step 9. HIF (~GISo) has a unique rnaximal normal subgroup L/F. Also 

IHILI = tand t f ILIFI· 

Pi'oof. If So:S;J <l G, then Step 7 implies that t t IJISol, whence t IIGIJI. 
By the solvability of GISo, .it follows that G/So has a unique ~aximal 

normal subgroup }(ISo,t f 11(ISol, and t = IG: 1(1. Since HIF'~ OIS~, 

this step follows wi th L ~ H n I{. 

Step 10. (a) If A E Irr(FIF') is notS-invariant, then IG(A)IF contains 

exactly one Sylow t~subgroup of G I F. 

(b) If 1 f- c.p E Irr(F'), then Ic(cp)IF contains exactly one Sylow t-subgroup 

of GIF. 

Proof. (a) We note that /\ is S-invariant if and only if ). is So-invariant 

because F S = So. Assuming that). is not S-in~ariant, we have that every 

r E 1r1'(Sol).) satisfies s I r(l). We may thus assume that t f X(l) for 

. all X E Irr (CIA), as otherwise the conclusion of the theorem is satisfied. 

Since l' f IGIFI, we hiwe that). extends to).* E Irr(Ic().)I).) (see Theorem' 

0.13). Consequently Gallagher's and Clifford's Theorems (0.8 and 0.9)imply 

that f3 1-+ (;3). *)C is a bijection from Irr (Ia().)1 F) onto Irr (GI).). Thus 

t f IG : Ia().)1 and IaC\) contains a Sylow l-subgroup of G. Furthernlore, 

. t 1 j3(1) for all j3 E Irr (Ia()..)/ F) and Ito's Theorem 13.1 yields that Ia()..)1 F 

has a normal Sylow t-subgroup: This proves (a). 
'-



(b) LeL 1 f:. '? E In(F'). Then F ~ I c (,?) because P' ~ 'Z(P). If 

B E Irr (Fl<p), then r I B(l). Consequently if X(l) for all X E Irr (GIB). Re­

peat the argu~ent of the last paragraph to conclude that Ia( 8)1 F contains 

exactly one Sylow t-subgroup of GIF .. Obse~ve that la(B) :::; la(<p) because 

F' ~'Z(F). Because r flGIFl, we may apply Lemma 0.17 to conclude there 

,exists B* E Irr(Fltp) such that la(B*) = la(<p). Part (b) follows. 

Step 11. 

(a) Suppose that FIF' = AIF' x BIF' with A, B ~ G. Then A = F' 

or B = F'. 

(b) F = F'[F, S] 

(c) Flif?(F) is a faithful irreducible GIF-module. 

Proof. (a) Suppose not. By Gaschiitz'sTheorem 1.12, S ~ SolP acts faith­

fully on Flif?(F) and also on FI F'. Without loss of'generality,' S does not 

centralize B IF' and we may chdose (3 E Irr (B I F') that is not S -inv~ri ant. 

By Step 10, )a(1Ax (3)1 F ~ Ia((3)1 F contains a unique Sylow i-subgroup 

'Tal F of G I F. For a E Irr (AI F'), Ia( a x /3) = la( a) n la((3). Thus a x (3 

is not S-invariant, and by Step 10, we must have Tol P ~ I a( a). Thus To 

fixes all a E Irr (AlP'). Then Tol P centralizes AI po by Proposition 12.1. 

Hence HiP = ot(GIF) ~ CGIF(AIF'). 

If S does not centralize AI F', the same argument repeated with A and 

B interchanged implies, that HIF ~ CaIF(BIF'). This then implies that 

1 =I- HI F centralizes F I pI, contradicting Gaschiitz's Theorem 1.12. So 

S and HIP centralize AlP' ~FIB. Consequently, FIB ~ Z('GIB) aml 

[F,S]P' ~ B. 

Since P' < [F, S]pt ~ B, we may apply Fitting's Lemma 0.6 to as­

sume without loss of generality that B = [F,S]F' and AIF' = CFIF'(S) = 

CFIF'(SoIF). Since Seentralizes F" ~ Z(F), we see that [A,F,S] ~ 
[F',S] = 1 and [S,A,F).~ [F',F] = 1. By,theThree Subgroups Le~ma, 

[F, S, A] = 1. Since B = [P, S]PI ~ [F, S]Z(F), we have that [A, B] = 1.' 

vVe llext observe that B ~ Z(F). Siuce PI B ~ Z( G I B), it follows tlw,t 

GIB = FIB x JIB ~here JIB e Hallrt(GIB). (Since IGIl\ is;a power 

of r, certainly s, t E r( J).. If B is non-abelian, then r E r( J) because 

B <l J. Then the inductive hypothesis yields p E Irr(J) with p(l) divisible 

by -:'t least two primes in {r, 5, t}. The desired conclusion would then follow 

because J ~ G. Hence B is abelian. Because [A, B] = 1 and F == AB, it 

follows that B ::; Z( F). 

Now [F, H] ~ B ::; Z(F) arid consequently [F, H, F] = 1 = [II) P, F]. By 

the Three Subgr~ups Lemma, [F, F, H] = 1, i.e. H centralizes F', contra­

, dicting Step 6 (i). This contradiction yields part (a). 

(b) By Fitting's Lemma 0.6, write FIF' = CFIFt(S) x [FIF',S]. Since 

[P/P',S] = F'[P,S]IP') part (b) follows from part (a) or S'centrn.1izes 

FIF'. But S ~ SolF does not centralizes FIF' by Theorem 1.12 and so 

(b) follows. ' 

(c) Now Flif?(F) is a faithful completely reducible GIF-module by Theo­

rem 1.12. To prove (c), we may assume that Flif?(F) = Aolif?(F) x BoliJ!(F) 

for A o, Bo ~ G and Ao, Bo > if?(F). Repeating 'the arguments of the first 

two paragraphs of part (a), we may assume that S centralizes Ao/~(F). 

Then F'[F, S] ::; 'Bo < F, contracliG,ting (b) and completing, this step. 

Step 12. FIF' is an irreducible HIF-module. In particular, if?(F) = F' = 

CF(S) = Z(P). 

Proof. ' Assume not and let F' < E < F with E ~ H. Choose 1 =I- ( E 

Irr (E I F'). Since T { IH IF\, Lemma 0.17 implies there exists an extension 

e E Irr (FI F') of (such that e* is invariant in lH(O· Then lH(O = In((*)· 

By Step 11 and Fitting's Lemma, the principal cha~acter ~s the only S­

invariant irreducible character of FIF'. By Step 10 (a), 'ra(e*)/F contains 

exactly one Sylow 't-su'bgroup'TI/ P of G I P. By Step 8, TIl r ~, ott (G I F) = 
HIF. If A E Irr(FIE), then A(* extendse and lH(Ae*) ::; l H (() = lfJ((*). 
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By Step 10, w~ must have that TI stabilizes )..C and also)... Since this is 

true for all ).. E Irr (F/ E) ,'TI / F centralizes F / E. Since 0 t' (HI F)- = HI F, 

in fact HIF centralizes FIE. Then Cp/p,(HIF) i= 1. NowHIF:$ GIF, so 

that Fitting's Lelr;tma 0.6 and Step II (a) imply that IIIF centralizes FIF'. 

This contradicts Theorem 1.12, because HI F f 1. This step is complete. 

Step i3. (a),FIF' is a faithful irreducible LIF-~nodule. 

(b) ,HI F is a Frobenius group with cyclic Frobenius kernel LI F. 

Proof. Now V := .Irr (FI F') is a faithful irreducible HI F-module by Step 

12 and PropositioIl 12.1. Let 0 f= 11' be an L-submodule of V and let 

o f= w E"vV. By Step 12, w is not S~invariant and so, by Step 10 (a), w is 

centralized by a Sylow t-subgroup T21 F of HI F. Then W is stabilized by _ 

L T2 = H and so vV = V.Thus V is an irreducible L-module. Part (a) 

follows via Proposition 12.1. 

Now each)" E V is centralized by a Sylow t-subgroup of H IF and 

at'(H/F) = HIF. If V is a quasi-primitive module, Theorem 10.4 im-. 

plies conclusion (b) or ,that t =' 3 = char (V) = r. Since t and r are distinct, 

we may assume that V is not quasi-primitive. By Theorem 9.3, there exists 

D / F ~ HI F such that V D = VI ED ... EEl 11,1 (n > 1) for homogeneous compo­

nents Vi of V D that are transitivel'j permuted by HID. Furthermore, D (F 

transitively pennutes the elements of VI \ {OJ. SO IVI \ {O}IIIHIFI. Since 

S centralizes HI F, S permutes the Vi, By Glauberman's Lemma 0.14, S 

fixes VI' Since eveS) = Cv(SoIF) ~ I, sllVI \ {O}I. Then s IIHIFI, a 

contradiction. Part (b) holds. 

Step 14. IFI F'I = IF'I· 

Proof. Since F' is a minilnal normal subgroup of G and So ~ Ce(F'J, in 

fact F' is an irreducible HIF-module, as is Irr(F')~ For 1 =f ).. E Irr(F'), 

fu()..)IF contains a unique Sylow t-subgroup of H / F by Step 10 (b). Since 

HjF is a Frobenius group, we mu~t have that IH()..)/F E Sy1t(H/F). Since 

at'(li/F) = H/F f= I, H/Facts faithfully on F'. Since lIl()..)/F E 

Sy1t(H / F) and LI F = Ol(H I F), in fact F' is a faithful irreducible L( F­

module (just as in Step 13 (a)). Now' F / F' and F' are faithful irredUCIble 

L/ F-modules in characteristi~ r. Since L is cyclic, IF/ FII = IF'I by Example 

2.7. 

Step 15 .. If U < F', then F'/U = Z(fIU). 

Proof.SetZIU = Z(F/U)?: FI/U. Since U is S-invariant, so is Z. Let 

1 f= VJ E 'Irr(F'/U)., For 0 E Irr(Flcp), we have that 7' I 8(1.). T~lell 8 

is S-invariant, since otherwise the conclusion of the theorem IS satIsfied. 

Thus the unique irreducible cOllstituentof 8 z is S-invariant and extends VJ· 

Applying Gailagher's Theorem, 'evei-y. a E hr (Z / F') is S-invariant. Thus S 

and Sol F centralize Z / F'.' Step 12 implies that Z = F', as desired. 

Step 16. Conclusion., 

Proof. Fix; x E F \ FI al1d let Y = [F, x]. Now Y x is central in FlY and 

Y < F'. By Step 15, Y' = F'. ,Since F' ::; Z(F), the map 9 1-+ [g,'x] is 

ah~momorphism of F onto F' = [F,x]. Thus IFICF(x)\ = IF'\ = IF/F'I 

by Step 14. This is a contradiction because ,F' = Z(F) < CF(X). This 
o completes the proof of the Theorem. 

The assertion of the theorem abo~e is wrong if G is not solvable. To see 

, this observe that r(PSL(2, 21)), f ?: 2, has three components. Namely the 

, ordinary character degrees of P SL(2, 2/) are 1, 2~ -1~ 21 and 2/ + 1 (see [HB, 

Theorem XI, 5.5]). ' As another example, consider the group P S L(2, 11), 

'which has the following graph (see [HB, Theorem: XI, 5.7]): 

3-2-5 11 

18.8 Corollary. Assume that G is solvable. 

(a) Tllen d'iam(r(G)) ::; 3. 

(b) Ifr( G) has two components r 1 a.n~l r 2, then both ~.re regular graphs: , 

l 
~ 
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Proof. (a) If not, f(G) contains a shortest pat'h of length 4, say 

• • • • • 
p q r s t 

for (distinct) primes p q l' S t By' Theorelu 18 7 t f tl t' , , , , '. . , wo 0 le ver Ices p 7' 

and t must be connected, a contradiction. ' 

(b) Let pErl and q, 7' E f 2. By Theorem 18.7, d(q,7')::; 1. Thus f2 is 

regular. Likewise, f 1 is regular. o 

Solvable groups with two components cannot be too complicated. For 

such G, the nilpotence length must be between 2 and 4. We will prove this 

in Theorem 19.6, whose proof gives much more information about such G. 

On the other extreme, we' do not ~now of a solvable group whose graph 

has diameter 3. But the ~imple Janko group J1 does have diameter 3. The 
graph for J1 is: 

3~/7~ 

/2~ /11 
5 19 

But ev~n this ~eems rare. Consulting The Atlas of Finite G~oups [CCNPW], 

many SImple groups have regular graphs. . 

Th~ graphs f(As) and f(PSL(2, 8))' each have.3 components. His true 

that n(f(G)) ::; 3 for arbitrary G, a theorem due to Manz, Staszewski, and 

Willems [MS'\iV]. In Corollary 19.8, we show that a minimalcounte~example 
to this theorem is simple." , 

I Chap. V 
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Coprhne ,Group Actions and Character Degrees 

We begin this section by proving an int.eresting Theorem 19.3 of -Isaacs 

[Is 9]. Suppose that H acts non-trivially on N, (IHI, IN!) = 1 and H fixes 

every non-linear character of N. Then N is solvable.( without appeal to the 

classificatiop. of simple groups) and the nilpotence length of 1'1 is at most 

two. More can be said regarding the structure of N, see Theorem 19.3. 

We apply Isaacs' Theorem 19.3 and Theorem 12.9 to study solvable 

. J': groups G whose graph f( G) has exactly 2 components, i.e. there exists' 

a "non-trivial" set Jr of primes such that each X(I), X E Irr (G), is a Jr­

number or Jr/-number. The s'tructure of such groups G is very limi ted (e.g. 

dl(G/F(G))::; 4 and the nilpotence length neG) is 2, 3, o~ 4). 

We close this section with another application of Theorem 19.3. If G is 

non-solvable; then n(f( G)) :::; maxE n(f( E)) as E range~ over 'non'-solvable 

composi.tion factors of C. This result employs the Ito-Michler: Theorem 

13.13 for non-solvable groups and thus relies upon the classification of simple 

groups. 

We begin with two lemmas. In Lemma 19.1, we ~lo not assume that P 

acts faithfully on Q. 

19.1 Lelnma. Let P be a p-group of class cl (P) :::; 2 and suppose tl]at P 

ads on some non-trivial pi -group Q such that C p( x) :::; pi for a111 =1= x E Q, 
. Til en P acts fixed-paint-freely and is either cyclic or isomorphic tOQ8' 

Proof. We argue by induction on IPI. First a,ssume that P does not act 

fixed-point-freely on Q. ,Then there exist~ 1 =1= x . E Q such that Z := 

; Cp(x) =1= 1. Since Z :::; pi :::; Z(P), Z is normal in P. Let C == CQ(Z) . 

. Then x E C and PI Z acts on C . Now if y E C \ { I}, then 

Cp/Z(Y) = Cp(V)/Z :::; P'/Z = (P/Z)', 

.f and the action of P / Z on 'C satisfies the hypotheses of the Lemma. By the 
(' 

) 



inductive hypothesis, PIZ acts fixec!-"point-frecly on C. Also P/Z is cyclic 

or PjZ ~ Q8. In the first case, clearly P has to be abelian, contradicting 

1 1= Z S pl. In the second case) we may ~take subgroups A and B of P, 

sucl~ that P = AB, Z ~ A n B and such that both A/ Z and B / Z ar~ 
cyclic of order 4. Consequently, A and'B are abelian, An B ~ Z(P) and 

, ,IP : Z(P)I ~ 4" This forces IP'I ~/2 and since i =I Z ~ P', we conclude 

Z = P' and Q8 ~ P /Z is abelian, a contradiction., Hence P acts fixed~ 

and so Cc(u) ~ U. It follows that. G is a Frobenius group with kernel I( 

, and assertion (i). holds. 

(4) Suppose now' that G does not split over K. We wish to establish 

assertion (ii) and we assume that G I I( is not a p-group for any prime p. We 

can 'choose, therefore, z E G \ I{ such that I( z E Z( G / I() and o( I( z) = pq 

for primes p :j=. q. We may assume that z = xy =yx with x a p-element, y 

point-freely on Q. Because every abelian normal sul;>group of P is cyclic ,r a q-element and x, y E (z) n [G \ I{]. If k. E CK(z), then (2) implies that 

and cl(P) ~ 2, either P is cyclic or P ~ Q8 (see Corollary 1.3). \ 0 ," o(k).I. (o(x),o(y)). Thus CK(Z) = 1. Let C = Cc(z). Then I( n C = 1 

The n,ext result generalizes earlier re~ults of A. Camina [Cm 1]. 

19.2 LelTIlTIa (Isaacs [Is 9]). Let I( be a prope; normal subgroup of G 

and assume that G / I( is nilpotent. Suppose t~lat each conjugacy class of G 

o,utside ,of Ie is a union of cosets of I{. Tllen 

(i) G is a FTobenius group with kernel Ie; or 

(ii) G / I( is a p-group for some prime p; also G l1as anonna1 p-comp1e­

'ment M and Cc(rn) ~ I( for a111 =I m E M. 

Proof. (1) F~r 9 E G \ Ie, we claim tl1at ICc(g)! = !Cc/K(ICg')I. To see 

this~ note that by our hypothesis, the conjugacy class clc(g) is the union of 

exactly 'those cosets' of I( which constitute the class clc/K(I(g). It follows 
that 

IG,: Cc(g)!,= Iclc(g)1 = II(lldc/]((Kg)1 = !I(!I(GII(): CC/J((I(g)I, 

which at once yields the claim. 

(2) Let 9 E G \ I( and letk E C I((g). Then 9 is conjugate' to gk and so ," 

o(kg) = o(g). Since kg = gk, o(k)lo(g). 

, (3) Suppose first that G splits over I(, i.e. there 'is SOllle subgroup U of . 

G such that G = 1(U and 1( n U = 1. If u E U \ {I} ,then (1) yields 

ICu(u)! = ICG/K(I(u)! = ICG(u)I" 

and lei = ICc/J((I{z)1 ~ IGII(I, where (1) is used again and the fact that 

I( z E Z( G I I{). Consequently G = I{C and G splits over I(, a contradiction. 

This shows that G / I( is a p-group. 

To prove the second assertion of (ii), we fix P E Sylp(G) and claim that 

P n I( ,~ P'., Let- ; E P \ I( with I( z·· E Z( GI I() and let Q = [P,z] <J 1). 

Since (G, z] ~ J(, we have Q ~ P n Ie As IP/QI = ICp/Q(Qz)1 ~ICp(z)1 
(see [Is, Corollary 2.24]), we obtain by (1) that, 

IPIQI ~ ICp(z)1 ~ ICc(z)1 = ICc/z(I{z)l= IGI I{! = Ifl(P n I()! ~ IP/QI, 

and hence Q = P n Ie We have shown that 

P n I( = Q = [P, z) ~ P', 

and the claim holds. We have thus established the hypothesis of Tate's 

Theorem (see (Hu, IV, 4.7]) and G has a normal p-complement M. 

Finally, let 1 =I m E M and suppose that Cc(m) % K, Choose 9 E G\I{ 

centralizing m and note that ICc(g)1 = lCo/K(I{g)1 is a p-power. . Thus 

Cc(g) is a p-group and cannot contain Tn. o 

Suppose that If acts on Nand (IHI, IN!) = '1. It is a consequence of the, 

Glauberman-Isaacs correspondence that the number of H-invariant conju­

gacy classes of N equals the number of H-invariant irreducible characters of 

N. When H is solvable (i.e. when the Glauberman correspondence applies), 
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this is Theorem 13.24 of [Is]. The' more general case appears as Lemma 5.5 

of [Wo 2]. The next theorem of Isaacs does not really require that H. be solv­

able (and Isaacs did not assume that ). We only use the solvability of H to 

quote [Is] for the aforementioned consequence of character correspondence .. 

19.3 Theorelll (Isaacs [Is 9]). Suppose H acts non-trivially on Nand 

fix,es every non-linear irreducible character of N. Assume (INI, IHI) ~ 1. 

{Jet ·Af = [N, H]. Assume H is solvable. Tilen 

(a) N' = AI'. 

(b) One of the 'following occu~s: 

(i) N ,is abelian; 

(ii) M is a p-group of class 2 and N' ~ ZeN H); or 

(iii) M is a Fropenius group wit}) F}'obenius 'kernel M'. 

In all cases, N' is ~i1potent by TllOmpson's Theorem [Hu, V, 8.7f 

Proof. Since N'M is H-invari~nt, H permutes Irr (N'lI;[). 

(1) If a E Irr(N'lvI) and N' i ker(a), we claim that a is H-invariant. 

To see this, let X E Irr(Nla) and note that X(I) > 1. By our hypothesis, X 

is II-invariant. Since H centralizesN/N'lll[, Lemma 0.17 (c) shows that 0' 

is H -invariant. 

(2) Let 1 i= v E Irr (N'). We show that v cannot extend to v* E 

Irr (N'lvI). Otherwise Gallagher's Theorem 0.9 and (1) imply that v* and 

AV* are H-invariant for all A E Irr(N'M/N'). Consequently, H fixes all 

A E Irr(N'M/N') and H centralizes N'M/N' (see Ptoposition12.1), By -

Fitting's Lemma 0.6, N/N' = N'M/N' x CN/NI(H). Hence N /AI/N'= 1 

and M ~ N ' . Then H fixes every linear character of N and thus all char~ 
acters of N. Thisimplies that H centralizes N (see Lemma 12.2), a contra­
diction. The claim holds. 

\3) We next prove assertion (a). Observe that N'/(N' n M) is a direct 

factor of N' 1I1/(N'n1l1) and therefore every 1/ E hI' (N') with N'nM::; ker(/I) 

i 
extends to N'1I1. By (2), this can only happen for the trivial character of 

N' and thus N' n1l1 = Nt, i.e. N ' ::; M. Finally, if v E' I1'1' (N') with 

M' ~ ker(~/),then 1I extends to 1\1 = N'M, since MllvI' is abelian. Again 

by (2), the only possibility is 1I = 1, and this shows M' =, N ' , proving (a). 

(4) We next prove (b). Because N i = M' and N'M =M, step (1) yields 

that every non-linear charact~r of M is H -invariant (i.e. the action of H on 

1\;[ satisfies the hypotheses). Beca~se (INI, IHI) = I, we have that [111, H]= 

(N,H,H] = [N,H] = M. Hence CM/M/(H) = 1 and 1M is the only H­

invariant linear character of M'. Thus the number of irreduc~blecharacters 
of M that are not H-invar'iant is 1M : M'I - 1.. By a consequence of the 

Glauberman correspondence (see Theorem 13.24 of [Is)), IlvI : M'I.-:..l is also 'i' 

'the number of conjugacy classes of M that are not H -i nva,ri ant. If a; ~ 1\1', 

then cl},f(X) ~ MiX becauseM/M' is abelian. Sin~e CM/M/(H}= I, we see, " 

that neither Mix nor clM(x) is H-invariant. Since M has only 1M : M'1-1 

,non H -invariant conjugacy classes, it follows thatM' x is a single conjugacy 

class of 111 w heriever x ~ M'. 

, We have now established the'hypotheses of Lemma 19.2 (with lvI and M' 

in place of G and If). If M is a Frobenius group with kernel M', we are 

clone. We may therefore aSSUlne that M / M' is a p-group for some prime 

p, that' M has a normal p-co~plement Q ~ 1\1' and that C M(X) ~ 111' for 

1 f=x EQ. 

We cla'iffi t.hat [lvI', H] ::; Q. To see t1~is, work il~ the semi-direct product 

G = lvI H and consider a chief factor. U /V of G with Q ~ V < U :::; lVI'. 

'Since lv! I Q is a p-group, U IV' ~ Z(M IV). Let.1 1=.\ E Irr (U IV), hence 

A(l) = 1. Let further X E Irr (.iVfJA). Then xu is a multipleof /\ and we have 

1\.1' % kef X. Thus X is non-linear and hence II -invaria,nL It follows that /\ is 
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H -invariant and therefore H fix 11 1 t f I (UI ,: 
es a e emen s 0 rr V). Consequently, Since Pacts fixed-point-freely on Q, Thompson's Theorem [Hu, V, 8.7]' 

[U, il] :; V. Since H thus centralizes all chief factors of C between Q and . shows that Q is nilpotent. Let Q I L be a chief factor of G. Since P ~ M / Q 
M

I

, the coprime action of H onM implies that [M',HJ :;.Q, as claimed.;acts fixed-point-freely on Q, Q/L is a faithful irreducible lnodule of C/Q._ 

. ' .. ..'; Let 1 =I A E Irr(Q/L) and e E Irr(MI'\). Since ]vf' 'i ker(f)), f) is H-
,~mce we now have [M',H, NI] :::; [Q, MJ :::; Q and [Nf, Nf', H] :::; [M', H] .s; I invariant. By Lemma 0.17, some M-corijugate of ,\ isH-invariant. Thus ,\ 

Q, It follows by the Three Subgroups Lemma [Hu, III, 1.10J that [M' M] = ;;is fixed by one of the four Sylow 3-subgroups of C/Q. Indeed, 10('\)/Q E 

[H,M,M']:::; Q. Let P E Sylp(M), s~ that P ~'M/Q has class at m~st 2. ~SYb(C/Q) for each 1 # ,\ E Irr(Q/L). Now IQ: LI = qm and ICQ/L(H)I = 
" ql for a prime q and integers ffi, 1. Since each 1 # ,\ E Irr (Q / L) is fixed 

We next prove the result when Q = 1. In t'llI's case ~11 l'S a 1 t ' f C/Q' 1 th 1n 1 4( 1 1) 
. " , 1VJ C ass wo by exactly one Sylow 3-subgroup 0 , we lave at q - = q - . 

p-group and so N' - M' < Z(M) B F'tt' "L' b' 
,- - . Y 1 mg s elnma 0.6, N/M' = '. Now II m and it easily follows that qm = 9. This is a contradiction, ecause 

MIM' X C/M', where C/1I1' = CM/MI(H). Since,[M, CJ :::; M' :::; Z(M),t (lHI, \MI)= 1. The proor'is complete. 0 
we h~ve that [M, C, M] = 1= [C, M, MJ. By the Three Subgroups Lemma ;' 

(Hu, III, 1 .. 10], M' :5 Z(C). Since N = MC, indeed N' = M' :5 ZeN). 

By the .next to last par~graph, [M', il] ::; Q= 1. Thus 111' ::; ZeN H). 
ConclUSIOn (b) holds. We thus assume that Q # 1. ' 

Now Q::; M'::; M"QP = M and Pn Q = 1. Hence pI = M' np. For 
1 # x E Q, we have that CM(x) < M' and so Cp(x) < p' , N L ' - - _ . ow eillma 
19.1 applies to the action of P on Q. Thus Pacts fixed-point-freely on-Q 
and either P is cyclic or P~ Q8. 

. First assume that P is cyclic. Thus M' = Q ~ C 0 (x) for all 1 =I x E Q. 
Smce Q -1.1, then M is a Frobenius group with kernelM'. Conclusion (b) 
is then satisfied. So we now assume that P ~ Qs. 

Now M' /Q has order two. Clearly w~ may assume that H acts faithfully 

on N and also on M. If 1 =lHo < H, the action of Ho on N satisfies 

the hypotheses of the theorem. The proof of part ( a) shows that N' = 
M' = [N,HoJ/. ,But I.1\II'/Q/ = 2 and .M/Q ~ Qs. It thus foll~w$ that 

{N, HoJ = 111 and Ho act.s non-triviaUyon M / NI'. Hence H acts faithfully 

on M/i'v1'. Since MIM' ~ Z2 x Z2 and (IHI, 1.1\11) = I, we have that lHI =3 
and G/Q = MH/Q ~ SL(2, 3). 

;' As mentioned before Theorem 19.3, the solvability of H is not really 

~ necessary in that theorem. In our fi.rstapplication, Theorem 19.G, 11 will 1 ' ., . 
;i be abelian. Our second application uses the next corollary., 
" 

l' 
if 

t 19.4 Corollary. Suppose that H acts non-trivially on N and fixes every 
f 1 non-linear irreducible character of N. If (lH I, IN I) ~ 1, then N is solvable. 

Ii In fact, Nt is nilpotent. 
I ' 

l 
1 
r 
! 

Proof. Without loss of generality, H i= 1 acts faithfully on N. The hy-

r 
I 

potheses are metby·every non-trivial subgroup of H and so we may assume 

H to be cyclic. Now.Theorem 19.3 shows that N' is nilpotent. 0 

! 

I We next apply Isaacs' Theorem 19.3 along with Theorem 12.9 to inves-

t tigate solvable groups whose graphs have two components~ Initial study 
I: 

~ 
\' 
i:-

ii 

of groups whose graphs have more than one component was initiated by 

Manz [Mz I, 21. Manz and Staszewski[MS 1] showed ~olvable groups C 

~ith two components must have nilpotence length n( C):5 5. Palfy,in cor-, 
respondence, has announced n( G} ~ 4 and when n'( G) = 4, G /Z( G) is a 

{2, '3}-group. We have yet to see Palfy's proof, but we prove below (Theo­

rem 19.6) that n(C) ::; 4 and dl(C/FCC)) ::; 4. More information about G 

is evident from the proof of Theorem 19.6. We have seen above (Corollary 



18.8) that the two components of r(G) are regular. 

\iVe also mention one example before proceeding wi th the proof. Let H 

be the semi-direct product of Z3 X Z3 and GL(2, 3)., If A is abelian and 

G = H X A, then r(G) has two components, namely {2} and {3}. Also 

n(G) = 4 = dl(GIF(G)). It is convenient to first isolate, ina lemma, one.of 

the arguments needed in the l)roof of Theorem 19.6. 

19.5 Leillma. Suppose th~t M is a normal Hall7r-subgroup ofG = orr(G) 

and G IlvI is abelian. Assume that 111 is a Frobenius group wit}l Frobenius 

kernel 111'. If V is a finite faithful irreducible G-modllle such t}lat C c ( v) 

contains a Hall 7r' -subgroup of G for each v E V, tilen tilere exists 0 i= w E V 

such that C c ( w) does not ilave a normal Hall 7r'-subgroup. 

Proof. Since M' is the Frobenius kernel of M, then A1' = F(M) and also 

(1],,;1 : A1'1, IM'I) = 1. Let HIM' be a Hall 7r'-subgroup of GIMi, so that 

G = NIH and M' = NI n H. Since F(G) n lvl~= M ' , it follows F(G)IM' is 

a 7r' -group. The hypothesis on centralizers implies that 0 rr' (G) centralizes 

V, whence F(G) is a 7r-group. T~us F(G) = M'. Nov.: M/M' and G/M are 

non-trivial abelian groups. Because orr( G) = G, H 1] G and n( G) =3. 

Now V is a faithful irreducible G-module and Cq(v) contains a Hall7r'­

subgroup of G for' each -v E V; Since n( G) = 3 and 0 rr (G) = G, Corollary 

10.6 implies that V is not a quasi-primitive G-module. Chobse G <J G 

maximal such that Vc is not homogeneous and write Vc = VI EB·:· EB Vn for 

homogeneous components Vi of Vc with n > 1. By Proposition 0.2, GIG 

primitively and faithfully permutes {Vi, ... ,Vn }. Sinc~ orr(G) = G, we 

apply Theorem 9.3 to conclude that: 

Oi) n = 3,5, or 8 (respectively); and' 

(iii) p = 2,2, or 3 (respectively) isthe unique 7r'-prime divisor of lG/CI. 
, -

Further,more char(V) = 2 if p = 2, by Lemma 9.2. 
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We claim that C is a 7r-group. For O':f VI E V1 , we may assUlne;that 

Cc(vd contains a Hall7r'-subgrourj S ofG and that S ~ Cc(vi). Now SnC 

is the unique Hall 7r'-subgroup of Cc(vd and is a Hall 7r'-subgroup of C. If 

V'j E V j# for i 2: 2, then CC(V1.+'·· + v n ) S CC(Vl) and CC(VI + ... + va) 
contains a Hall 7r'-subgroup of G. Hence S n C must centralize V2 + ... + Vn-

Since these were' arbitrarily chosen~ S n C centra.lizes V2 + .. " + Vn . Now 

fix 0 i= V2 E V2 ,' Then,' repeating the above arguments, S n G is the unique 

Hall 7r'-subgroup of G centralizing V2 and'S n C centralizes VI' Thus S n G 

centr:alizes V, whence S = _1 and G is a 7r-group. 

Now C <],,;1 and it follows from (i), (ii), (iii)- above that M/G ,is the 

unique nlaximal normal subg~6~lp of G/G and IG ,: MI =p. Also G/C has a 

unique minimal' normal subgroup L/C with IL/CI = n. Also 1vl = L \'\Then 

p = 2, an'd INI ILl = 7 when p =-3. 

We designate a prime t by letting t = 7 when p = 3 and lett.ing t = n, 

when ]J =~. We now prove the lemma in the case (2 f IGI. Then a Sylow 

t-su-bgroup T of G permutes {VI,," , lIn} non-trivially and we may find a 

non-zero vector w = (W], . .. , Wt, 0, ... ,0) that is centralized by T. But w is 

also centralized by a Hall7r'-subgroup of G. When p = 3, LCc(w) = G and 

1 " 2 CC (w') - G Thus Co(w) has a non-abelian factor group of w len p =, c -', 
ordcr 21 whcn p = 3, or Co(w) has a factor group isomorphic to D2n when 

p = 2: Since p is the only 7r' -divisor of IGI, it follows that C c ( w) does not 

, have a normal Hall7r,'-sllbgroup, as desired. The lemma holds whent 2 f IGI· 

Set IVII = qm for a primeq and integer m. V'le next prove the lelnlll~t 

when'qln = 32 or 34 • Here 7 f IGL(m,q)l, whence 7 f IG/Cc(Vi)1 for each 1" 

and 7 f IGI. Since char(lI) i= 2, P = 3 and thus t = 7 is an exact divisor of 

IGI. In this case, th~ lemma follows from t.he last paragraph. So we assum,e 

that q11l i= 32 or 34
• 

First suppose that p = 2. Then lIif' ~ C. Since lIif' = F( G), indeed 

Ai' = F(C). Now C < Ai ~ Ca(MIF(C)) ~ Cc(C/F(C)),and Lemma 

9.10 (b) yields that G= F(C) = 111'. Since (1111 : 111'1, 1111'1) = 1) then 

,'" 



t = n == 11\1 : M'I is an exact divisor of IGI and the lemma follows ~hell i Proof. Whenever' J is, a nilpotent group, r( J) is a regular graph. Since 

p =:;= 2. , n(r( G)) = 2, G is not nilpotent. Thus F2 > F and we choose a prime p 

,Finally, we assume that p =3. Here (M/G)' = L/G and 1M : LI = 7 = t. 
If 1\1' = L, ~e argue as in the last paragraph that t is an exact divisor 

of I GI, as desired. So we thus assume that M' < L::; lvI. Since 1\1/ C is 

non-abelian, M' i C. Then L = 1\I1'C because L/C is a chief factor of G, 

and hence M' n G < 1\11, Becq..use M' n G < M' < L~ M and 1\1' is 

the Frobenius kernel of 1\1, the group L/ MI n C must be a Frobenius group 

with kernel MI/1\ll n G: This is a contradiction, because L/(MI n G) = 

C /(1\11' n C) x M' /(A1'n C). 0 

We define characteristic subgroups Fj(G) iteratively b.y letting Fa(G) ~ 1 

and Fi+l(G)/Fi(G) = F(G/Fi(G))., So FI(G) = F(G) 'and n(G) is the 

slnalle~t n for which F n( G) = G. 

Let Y/F(G) = Z(F2(G)/F(G)). By Lemma 18.1, there exists-7J E Irr(Y) 

with 1](1) =IY : F(G)I· If T E Irr(F2(G) I 17), then T is divisible by 

every prime divisor, of IF2 ( G)/F( G)I. Hence, for each i ;::: 2, there e~­

ists Ti E Irr(Fi(G)) such that Ti(l) isdivisible"by,each prime divi~or of 

IFi (G)/Fi-l(G)1 and F i - 2(G)::; ker(Tj). 

19.6 Theorem. Suppose G is a solvable group, wllOse grapb has (exactly) 
two components. Tllen 

(i) 2::; n( G) ::; 4,ancl 

(ii) dI(G/F(G)) ~ 4. 

Proof. We let Fi = Fi(G) and set F = Fl. 

Step 1. (i) G is not nilpotent. 

(ii) Choose 'a prime p /IF2 / Fl. Then pE 1f for a component 1f ~ f( G). 

,/iii) For each i 2:2, Fd Fi-l is a 7f-~roup or a 1f'-group. In particular Fd F 
IS a 7f-group. 

dividing IF2/~l Sincep IIG/FI,indeedpE r(G).' Parts (i) and (ii) follow. 

By definition of 7f, the degree of an irreducible charader of G is a 7f­

number or 7f'-number. Also, if N :s! G and 8 E Irr(N), then 8(1) is a 

7f-number or 7f'-number. This fad is used repeatedly 'in the proof. 

For i;::: 2, it follows from Lemma 18.1 (see comments preceding the 

theo~em) that there exists fJi E lrr(Fj ) such that fJi(l) is divisible by every 

J pri~e divisor of IFd F i - 1 1. Thus Fd F i - 1 is a 7f.,.group or 7f'-group. 

Step 2. Choose m maximal such that Fm/ F is a 7f-group. Then 

(i) Fm+Ii Flit is~n abelian 7f'-groni>; (tHcl 

(ii) G/Fm+1 is an abelian,7f-group." 

Proof. Since m ~ 2 (se~ Step 1), there exists a non-linear T E Irr(F m) 

'with T(l) a 7f-number (by L~mma 18.1). If e E Irr(Glr), then eel) must 

be a 7f-number. By Theorem 12.9, G / F m has an abelian Hall 7f'-subgroup. 

Since Fm+t/Fm is a 7f'-group by Step 1 and sinceCG(Fm+l/Fm)::; Fm+l 

by Lemma 0.19, Fm+d Fm nlUst bean abelian Hall 7f/-subgroupqf G. This 

proves (i) and that G / F m+1 is a 7f,-group. 

By Lemma IS. 1, there exists a non-linear 1] E Irr( Fm +1 ) with 17( 1) a 7f'­

i, nurnber. Since G/Fm +1 is a 7f-group, each J..L E Irr(GI7J) must extend 17. It 

follows fro~n Gallagher's Theorem 0:9 that G / F m+l is abelian. 

Step 3. Let~ P E Hall1f(F) and Q E Hall1fI(F). 

(i) Then P or Q is abelian. 

(ii) If Q is non-abelian, then F2/Q is an abelian ~-group, and G/ F2 is 

an abelian 7f'-group. Also Q is a class two group. 

Proof. Part (i) is immediate, because F is nilpotent and the degree of every 
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irreducible character of F must be a 7r-number' or 7r'-number. 

We assume that Q is non-abelian and choose BE Ir1'(Q) with B(l) 1= l. 

Every X E Irr( G/B) must be of 7r' -degree and so Theorem 12,9 implies that 

G / Q hasan abelian Hall 7r-subgroup. Since Q < F < L' . L'/F . __ 1.'2,SlnCe1.'2 ISa7r-

group aJld CC(F2/ F) :::; F2/ F (Lemma .0.19), it follows that F2/ F contains 

a Hall7r-subgroup of G/F. So F2/Q is an abelian Hal17r-subgroup of G/Q. 
By Step 2, G / F2 is an abelian 7r' -group. 0 0 0 ' 

We must prove that cl( Q) = 2. Let D E Hall rr (F2) so that D is abelian, 

.:r'h~n D ~ F2/Q acts on Q and fixes every non-linear charact~r of Q. Now Q 

1~ l111poten,t and' thus contains no Frobenius group. 0 Since Q is non-abe1i~n 

TheorelTI 19.3 implies Q is a class two group, as desired, or that F2/Q act~ 
t~ivially on Q. In the latter case, F2 = D X Q. Since D is abelian, F2 is 

, mlpotent, a contradiction as F2 > F. This step is complete. 

Step 4. If G / F is a 7r-group, then G / F is abelian, In' this case, dl( G) ~ 3. 

Proof. Since n(r( G)) = 2 and G/F is a 7r-grollp Q t b b I' 
o , ,mus e non-a elan. 

Now Step 3 (ii) shows that G / Q is an abelian 7r-group and dl( Q):::; 2. 

Step 5. (i) m = 2. 

(ii) F2/ F is an· abelian group or is a class 2 nilpotent group. 

Proof. By Steps 4 and 2, we may assume that m > 3 and F /F' 
, ' - m+l m IS 

a non-trivial abelian 7r'-group. Since T( 1) is 7r-number or 7r'-~'lUmber for 

T E Irr(Fm+l) aIid since Fm/Q is a 7r-group, every non-linear irreducible 

character of Fm/Q is invariant in Fm+1• Applying Theorem 19.3 to the 

action of a Hall 7r'-subgroup H/Q of Fm+1 /Q on Fm/Q, we conclude that 
one of the following Occurs: 

(a) F",/Q is abelian. 

(p) F m/ Q is nilpotent of class two or , 
o (c) There exist normal subgroups Q:::; l( :::; ]111 :::;Fm of G such that 

lv1/Q is a Frobenius group with kernel l(/Q = (1I1/Q)' = (Fm/Q)'. 

I 
! 

, ~ 
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Also M/Q = [Fm/Q,H/Q]. 

In cases (a) and (b), Fm/Q is nilpotent. But Q ~.F ~ F2 ~ Fm. Thus 

in = 2 and this step follows in these cases. We assume (c) holds and adopt 

that notation. 

We let 1 = MH; Now Fm+dM = Fm/M X l/M and 1 = 011'(Fm+l)' 

Also I{ < M and [M / !{, H J{ / }(1 = M /}{ because the order of H I( I.!( ~ 
'H/Q is coprime to that of M/le Now K/Q is t~le Froben~uskernel.of 

, M/Q and thus }(/Q = F(M/Q). AI~o I(/Q = F(l/Q) because F 2 /Qis a 

7r-group. 

By Step 3 (ii), we can assume that Q is abelian. If Q ~ Z(I(), t.hen 

l( is indeed nilpotent, whence l( :::; F. Since Fm/ l{ is abelian, both con­

clusions hold in this case. We may thus assume that ]( 1:. C M( Q). Since 

(101,1](/01) = 1, we lTIay choose achieffactor Q/01 of G that is not central 

in je Let V = Irr(Q/Ql)' Since]{ 1:. CM(V) and ]{/Q is the Frobenius 

kernel of lvl/Q, we also have 'that M/CM(V) is a Frobenius group with 

l(CM(V)/CM(V) = (M/CM(V))' and that orr(l/C J(V)) = l/C;(V)) 
because orr(l/Q) = l/Q. If 1 1= >. E V, then >.extends to IM(>'), because 

(1M, : Q\, IQI) = 1. But I M (>.) < 111 and so each 7] E Irr(l\>.) has degree 

divisible by a prime in 7r. 'So ry(1) is a 7r-number for all 7] E Irr(ll>')· Hence 

IJ(>,) contai~s a Hall 7r-subgroup of 1 and A extends to 0' E Irr(IJ(>,)) 

(see Proposition 0.12). Then (30' E Irr(IJ(>.)) for all (3 E Irr(IJ(>,)/O)· 
Thus (3(1)- is ~ 7r-number for all,f3 E Irr(IJ(>.)/Q), whence 1;(>')/Q has a 

l;ormal Hall 7r'-subgroup. So I;().)/CJ(V) has ?- normal Hall 7r'-subgroup 

U/CJ(V) E Hall rr i (l/CJ(V)) for all non-zero)' E V. Applying Lemma 

19.5, we get a contradiction, completing this step. 

Step 6. Conclusion. 

Proof. B~ Step 1, n(G) 2 2. By Step 5, m =2 and dl(F2/ F) ~ 2. By Step 

2, n(G/F2) ~ dl(G/F2 ):::; 2. Hence n(G),~ 4 anddl(G/F) ~ 4. 0 



We give another application of Theorem 19.3 in the following reduction 

theorem for graphs of non-solvable groups. The proof is dependent upon 

the classification of simple groups, because the Ito-Michl~r Theorem 13.13 

is applied to a non-solvable group. ' 

19. 7 Theore~. Suppose that ]{, L' ~ c' and 1 =f 1(1 L is a direct product of 

simple non-abelirul groups. If G j]( is solvable, then n(r( G)) ~ n(r( I( j L)). 

Proof. We argue by induction on IGI. Since Z(](jL) = 1, we have that 

](Cc(I(jL)/Cc(]{jL) is G-isomorphic to I{jL. Without loss ofgenerality, 

we may assume that Cc(I(1 L) = L. 

First assume that ]{ = G. It suffices to show that each q E reG) \ r( G j L) 

is connected in r( G) to some prime i? r( GIL). By Remar~k 13.1:3, r( GIL) = 

7r(GjL). So, if 8 E Irr(G) with q I 8(1), we can assume that 8L is irreducible. 

Choose f3 'E Irr( Gj L) non-linear. Then f38 E IIT( G) and q is connected in 

r( G) to some prime in r( GIL). Hence we may assume that ]{ < G~ . 

We may ch?ose ]( ~ N ~ G with IGjNI = p, a prime. If reG) = 

r(N), then n(r(G)} ~ n(r(N)) and we apply the inductive hypothesis. So 

we can assume that reG) = r(N) U {p}, p ¢ r(N), and that X(l) = P 

whenever X E Irr(G) andp I X(I). In particular,'GjN fixes every non-linear 

character of N. Since p ¢ r(N),' the Ito-Michler Theorem 13.'13 implies 

that OpeN) E Sylp(N). A Sylow p-subgroup P of G acts non-trivially on 

.NjOp(N), because Cc(I{jL) = L. Applying Theorem 19.3 to the action of 

P on NjOp(N), we get that NjOp(N) is solvable, a contradiction. 0 

19.8 Corollary [MSW]. If G is non-solvable, then 

n(r(G)) ~ mfCn(r(E)), 

as E ranges over the nOll-solvable composition factors of G. 

In ~ddition to the above reduction, Manz, S'taszewski and Willems used 

the, classification of simple groups to show that n(r( S)) ~ 3 for every simple 

a group S. vVe do not prove tlw,t here, but just state the consequcllCC of that 
~, 
~ result and Corollary 19.8. 
~, 

" if 
1 
~ 
\ 

l-
1 
Ii' 

19.9 Theoren1.. For every group G, n(r(G)) ~ 3. 

,§20 Brauer Characters - the Modular Degree Graph 

, iii In this'section, we again investigate Brauer characters with respect to a 

.. ~ prime p. We construct a graph r p( G) with vertex set 

11 

,J 

I 
i 
i 
l 
I 

1 
I' 
I 

I 
I 
1 
1 

I 
I. 

{q \ q prime,q \ <pel) for some <p E IBrp(G)} 

and make a graph 'by connecting distinct ql, q2 E r p( G) if ql q2 \ 17(1) 

lor some 11 E rDr,)(G):. As in t.he previons sections, we oenot,e hy d(.)·) t.he 

. natural distance function 011 I'p( G). Also di<un(1'1)( G)) clellolcs tlw diil.llH'l.n 

and ncr p( G)) the number of connected components off peG). 

W~ sta~t with an easy result, which is similar to Theorem 18.4. We will 

impiicitly use Proposition 14.4 throughout this section (including t.he next 

Proposition). 

20.1 Proposition~ Suppose tllat G lIas a llon-abeiiau solvable pI-factor 

group G / J( .. Then one of t1le following occurs. 

(i) ncr p( G)) = 1 and diam(r p( G)) ~ 4; or 

(ii) ncr p( G)) = 2 and diam(f p( G)) ~ 2. 

Proof. Choose J( ~ N ~ G maximal such that G / N is non-abelian. Then 

mimic the proof of Theorem 18.4, using that IBrp(GIN) = Irr(G/N). 0 

I. To obtain bounds for n(1'1) ( G)) and diam(1' p( G)}, where G is an arbitra.ry . 

. ~ s~lvable group, we need .the following modular analogue of [Is, 12.3] (see also 

. Lemma 18.3). 
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o 
20.2 Proposition. ,Assume tllat N :s! G is maximal witl] respect to GIN' 1, whence G = M. 

having a non-linear irreducible p-Brauer character. Then the following 

hold: 

(i) GIN has a unique minimE!J n arm a1 subgroup MIN and MjN is not 

a p-group. 

(ii) GIN has a no~mal subgroup I{/N ~ M/N such t!Jat I(/M is a 

p-group and G /I( is an abelian p'-group. 

(iii) If MIN is non-solvable, 'then Co/N(MIN) = 1. 

(iv) If M / N is solvable, then M / N is an elementary abelian 1'-group for 

a pri~e 7' =J. p. Furthermore, G / A1 acts faitJlfully on MIN or G /N 

is a 'non-abelian r-group. 

Proof. First observe that every irreducible Brauer character of a group 

H is linear, if and only if H' is a p-group. IfN < L :s! G,' then each 

cP E IBrp(G/L) is linear and so OP(G') :::; L.' But G/N itself has' a n~n­

linear Brau,er character, so that OP(G') 1:. N. Hence G/N has a uni~ue 
minimal normal subgroup A11N (namely OP((GIN)')) .andA1IN. is not a 

p-group., Set I(IA;J E Sylp(G/A1). Then I(IN ::9 GIN, and GII( is ~n 
abelian p'-group. This establishes assertion? (i) and (ii). 

Let G/N = CG/N(M/N) :::] G/N. By the first paragraph, either G = N 

or M :::; G. , Part' (iii) thus follows and we may' assume that M / N is an ' 

elementary abelian r-group for a prime r f= p. If JIM is a 'characteristic 

subgroup of G/M and r't 1 J/1I1 1 , then JIN = M/N x D/N for sOllie 'D :s! G. 

By the uniqueness of A1/ N, D = Nand J = M. Hence r divides the order' 

of every non-trivial characteristic subgroup of G 1M. Since G I A1 has a 

normal p~subgrou:p 1(1 M wi th abelian factor group G / 1(, it follows that 

GIM is an r-group. To prove (iv), we may assume that GIG is not an 

r-group. Consequently, the normal subgroup HIM E Hall r , (G / M) is nOll­

trivial. Observe that HIA1 acts coprimely on G/N and faithfully on 1vJ/N , 

and [.iV/ / N, II/AI] = M / N. On the other hand, H /.iVi centralizes G /1111. 

!herefore MIN 1:. iJ>(GIN) and GIN is abelian. By Lemma 0.6, GIN = 
jvI/N x CC/N(H/AI). By t.he uniqueness of 111, we conclude CcjN(IfIA1) = 

Our next result shows that for solvable G, nCr p( G)):::; 2 and diam(f p( G)) 

::; 5. In fact, the sum of the diameters of componelltsis at most 5. 

20.3 Theoreln. Let N ::9 G be maximal such that G / N has a non-linear 

irreducible p-Brauer character. If G / N is solvable, then 

'(a) n(rp(G)) S 2; 

(b) diam(f p( G)) S 5; and 

(c) ifn(rp(G)) =2, tilen diam(fp(G))::; 3 and at most one component 

bas diameter 3. 

Proof. We may' assume that every p'-factor group of G is abelian, since 

1 
. tl /, l~ follows fl'om Prol)osition 20.1. By P~oposition 20.2, G ot Ierwlse Ie lesu \, }" 

h 
'1 b M aIld'I( with N < M < I( such that the conclusions as norma su groups. --

of Step 1 are satisfied. 

Step 1. (a) lv/IN is the unique minimal normal subgroup of GIN and is an 

elementa.ry' abelian r-group for 7' I- p. 

(b) ](/]'11/ is anon~trivial p-group. 

(c) G / I( is an abelian p' ~group, and 

(d) GIM acts faithfully' on A1/N. 

Step 2. p E rp(I(/N). 

Proof~ The assertion is an immediate consequence of Step 1 (a, b, d). 

Step 3. Let () E IBrp(G) with (B(1),p7') = 1, and let y be a prime such that· 

y J 8(1). Then d(y,p) S 2, and if y t IG/I(I, then even d(y,p) = 1. , . 

Proof. Let 17 be an irreducible constituent of B J( and observe that 17 N E 

IBr1)(N). By St.ep 2, there exists.T E IBrp(](/~) with p I T(l). It follows 
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from Lemma 0.9 that 117E IBrp(J(). Thus d(p,z) = 1 for all prime divisors 

Z of 7](1) (if any).' In particular, d(p,y) ='lif Y f /G/I{/. If 77(1) =I=~, there 

exists a prime divisor Zo of 7](1) such that dey, zo) :s; 1 and d(zo,p) = 1. To 

prove that d(y,]))::; 2, we need just show that 17 is non-linear. 

iChap, V 
I 
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I • :l If fp(G) has two components f} and f2) we may assume wlthout loss 

:\ of generality that r E fl' ~nd p E f 2 • Consequently diam(ft) :::; 2 and 

\1 diam(f2) ::; 3, by t~e last paragraph. This proves assertion ( c) of the 
i ' 
;1 theorem. 
j 

Assume that 17(1) = 1, so that }(lker(17) is an abelian p'-group. Since J To complete ~he proof of the theorem (Le. part (b)), we may assume that 

the irreducible constituents of BJ( El:re C-conjugate, 1(1 ker(B]() is an abelian :!ri(fp(C)) = 1. If r rt fp(C), then Steps 3 and 4 yield t~at dialn(fp(G)) :s; 3. 

p'-group. Since I(IM i 1 is a p-group and MIN is'the unique l~inimal :; We may finally assume that r E fp(C). By Step 3, diam(fp(G)) :s; 2 + 
I ' 

,normal subgroup' of C IN, this forces ker( B]() = 1(, i.e. f( $ker( B). Since .! d(p, r') + 1. This step is complete. 

C' ::; f(,' B is linear. This contnldicts the assumption that y I B(l). Step 3 

now follows.' 

Step 4. There is at most -one prime qo such that qo II C I I( I and d( qo, p) > 1. 

Step 6. Conclusion. 

Proof. It remains to pro~e that diarri(f p( G)) :s; 5. We may assume by Step 

5 that n(fp(G)) _= 1, b~t d(p, r) > 2-. Consider ashortest path betweell ]> 

and 7', say 

Ul-l r 

Proof. Let,7r = {q I qIICII(1 and d(q,p) > I}. If 1 i A E IBr]J(IVIIN) = 
Irr(MI N),. then p I ~(1) for every ~ E .IBrp( CIA), bec~use C 1M has a normal 1 

p-subgroup I{IM =I- 1 that 'acts 'faithfully on the irreducible GIM-module ,; 
MIN. In particular, oX is centralized by a Hall7f-subgroup of GIM. '! where d(p,r) = I. By Step 5, we assume that I ::;>: 3. Suppose at first that 

Let II I f( = 07r~ (G I I() = 07r( C I K). Then Irr( 1111 N) = M~ EEl· .. EElM/ for 

irreducible H (lIi-modules 1I1i . Let Cd !vI = C I!/M(M'). Then n~_ c· = ]v! , I 1-1 I 

by Step 1 (d). Since the Cj are C-conjugate, IIIICil is divisible by every 

prime in 7r. By the last paragraph, each .\ E Mi is fixed by a Hall 7r-subgroup 

o~ II/Ci . Since HICi is a 7r U {p}-group, Lemma 18.6 (b) implies I;' ::; 1. 

Step 5. ,We may assume that fp( G) is connected, that 1· E f p( C) and 

diam(f p ( C)) :s; 3 + d(p, 1')' 

Proof. Let Y E fp(G). By Step 3, d(y,7'):S; 1 or d(y,p)::; 2. In particular, 

f I)( G) has at most two components, and.-a'ssertion (a) of the' theorel11 h91ds. 

If Yo E rp(G) is chosen such that d(Yo,r), 1 and d(yo,p) = 2, then Step 

3 yields that Yo IIG I I( I. Hence Step 4 implies that there exists at l110st one 
I ' . 

such prinle Yo. ,', 

! 1 ~ 4'and choose B E IBrp(G) such that U2U 3 I B(l). Then (B(l),pr) = 1 

J and Step 3 yields d(p, U3) :s; 2, a contr'adiction. Hence I = 3, and ,it remains 

;j to show that each t E fp(CY\ {p,r,uI,u2} (if any) has distance 1 either 

!~ to p or to 1'. If not, then Step 3 yields d(t,p) = 2 and t Ilcl }(I· Choose 

:1 7] E IBr (C) such that UIU2 I 7](1). Therefore (7](l),p1') = 1 and Step 3 
" p 
I implies U2 I I G I }( I,' a contradiction to Step 4. This completes the proof of 

, 0 
the theorem. 

i.,' '-We next bound n(fp(C)) for p-solvable groups G. Our proof however 

1: relies on Remark 13.13 and Theorem 19.9, which have not been proven 
F 
\: here. 

:;, 20.4 Corollary. Let C be p-solvable. Then n(fp(G)) ::;3. 
ii 
I' 
i: 

t ~, Proof. We take a maximal normal subgroup N of G ~nd ass~me by induc-

;;' tion' that f peN) has at m~st three connected co~ponents. Suppose that 

l 
] 

J 

] 

] 

] 

J 
] 
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We first consider the case IGINI = r for some prime r. If r ¢ fp(G) or 

r E fp(N), we are clearly done. We may also assume that r is an isolated 

point in f p( G). Hence there exists fJ E IBrp( G) with fJ(l) = r and so 

fJN = Al + ... + Ar , where Ai(l) = 1.. Set LIN' = Op(N/N'). Then 

L ~ ker(fJ) and G / L is non-abelian. SinceN I L is abelian and GIL is 

not, we may choose L ~ M :Sl G with N/M a q-group for a prime q with 

G 1M non-abelian. By definition of L; q f= p', Possibly q = r. Thus there 

exists T E IBrp(GIM) ofdeg~ee r., By assumption, there is a component 

6. 6f r p (G) such that 'r, q ¢ 6. and we consider 'IjJ E IBr p (G) such that the 

prime divisors of 1,b(1) b~long to 6.. As (1,b(l), IG/M!) = 1, we conclude that 

1,bM E IBrp(A1) and 'ljJT E IBrp(G) (see Lemma 0.9). This shows that T. E 6, 

a contradiction. 

We may thus assume that'S := GIN is a simple non-abelian p' -group. 

As IBrp(S) = lrr(S), Theorem 19.9 yields that n(Pp(S)) ~ 3 and Re­

mark 13.13 shows that fp(S) consists of :the set of prime divisors of 151. 
Shou1d n(fl'( G)) > 3, there exists, T E IBrp( G) such that T(l) > 1 and 

(T(l), 151) = 1. Then TN is irreducible and we again use Lemma 0.9 to 

derive a contradiction and complete the proof. ' o 

If G is not p-solvable, there is no universal bound for n(rp(G)) indepen~ 

dent of G and p. 

20.5 Example. For an odd prime p, thep-Brauer characters of SL(2,p) 

have degrees {I, 2, 3, ... ,p - 1, p} (see [H~, VII, 3.10)). It follows from the 

Prime Number Theorem that the number of primes between p /2 and p tends 

to infini ty. Hence 

lim s~p n(fp(SL(2,p))) = 00. 
p--->oo 

This section is based on [M\iVW}. 

Chapter VI 

-rr-SPECIALCHARACTERS 

§21 Factorization and Rest~iction of -rr-Special Characters 

For p-solvable groups G, the Fong-Swan Theorem (Cor. 0.33) states that 

each 'P E IBr p (G) can, be lifted to some' X E In ( G). Isaacs (Is 4, 5] showed 

the existence of a "canonical" lift. An important role in this lift is played 

by "p' -special" characters. For a set of primes 7r, we ~ay likewi~e define 

"7r-special" characters, which were developed by Gajendragadkar [Ca 1) 

and Isaacs [Is 6]. Let G be 7r-separable .. Then any primitive 1P E Irr (G) 

necessarily factors 1p = 1,bl1P2 as a product of a 7r-special chara.cter 1P1. and 

1f' -special character 1/;2, Furthermore for H, E Hall 1T ( G), 'restriction defines 

an injection from the set of 1f-special characters of G into hr (H). This 

concept yields a powerful tod for studying problems in the character theory 

of 'solvable groups. Then namely any primitive character X factors X. = 

II Xp as, a product of p-special characters XP' each of which very much 

"b:haves" like an' inedlicible chara~ter of a p-group. We use this approach 

in Section 22, where we give a pr~of of a conjecture of W. Feit. ' 

Recall that when 1) E Char (G), then the order of the linear character 

det(rJ) is denoted by.a(rJ). For convenience, we restate Theorem 0.13, which 

is of central importance here. 

21.1 Lemula.· Suppose that N ~ G, e E Irr (N) is inva:'iant in G arid 

(a(e) . 0(1), IGINI) ::::: 1. Then tl1ere is a unique extension X of () to G 

. satisfying (o(x), IGIN!) = ~. In fact, o(X) = 0(8). 

.Recall that X is called the canonical extension of () to G. 'iVhereas uniql1e­

ness of X is easy to see,' it is more difficult to prove existence. 



VYe now state the definition of these "magI' cal" '7r . • 1 h 't II -speCla c arac ers. 

21.2 Definition. We say that X E lIT (G) is i-speciai if 

(i) xCI) is a 1f-number: and if 
~ , , 

(ii) o( B) is, ~ 1f-number for all subnormal S <J <J G and all irreducible 

constituentsB of X s. 

We write'Xrr(G) to denote the set of 1f-special characters of G. 

21.3 Renlarks., For arbitrary G and X E X rr ( G), the ,following facts arc 

immediate: ' 

(i) If N ~~ G and tp E Irr(N) is a constituent OfXN, then <p E Xrr(N). 

(ii) Xrr(G) n Xrr/(G) = {1.e}. 

(iii) If N :S! G and B E X rr(N), then B9 EXrr(N) for all g: E 'G. 

(iv) If E 2 Q(x) ·2 Q is a Galois extension ofQ and (J E Gal (E/Q), 
, then XU E Xrr(G). 

(v) If G is a 1f-group, then'Xrr(G) = Irr(G). 

(vi), If G i~ a ~/-groul?' then Xrr(G) = {Ie}. 

The following lemma is a generalization of (v) and (vi) above. 

21.4,Lenuna. Let M ~ G, let BE Xrr(M) andx E Irr(GIB). Assume that 

(1) G/111 isa7r-group, or 

(2) G/M is a 7r'-group and o(X)' X(l) is a 1f-number. 

Tl1en X E X rr( G). 

Proof.' We first show that also under hyp'othesis (1), o(X) . x(1) is a 1[­

number. Write XM = e(B 1 + ... + Bt ) for an integer e and charactersBi E 

Irr(.i\1) that are G-tonjugate to B. By 21.3 (iii), Bi E Xrr(M). Now X(I) = 
eW(l) I 1~/.N~IB(l), and :\1) is a n:-nunlber.'Also th~ order of det(X)M = 

det(XM) - TIi=l (det( Bi )) IS a 1f-num~er. Thus both .A1 I ker( det(X)M) and 

G /!v~ ar~ 7r-groups, and therefore o(~) ::;:: IG I ker( det x)1 is a 1f-number as 

welL ThIS establishes the claim. 

1 Ch ... p, ',,-

I 

~ 

Obse~ve that by the last paragr?,ph it suffices to show that whenever N 

is a maximal normal subgr.oup of G and tp E Irr (N) is a constituen't of XN 1 

then in fact tp is 1f-special. Since N is a maximal normal subgroup of G, 

either !vI S; N or !vI N = G. We a!gue by ind~ction on IGI and assume first 

that M S; N. If hypothesis (1) holds, then induction inlInediately implies 

that tp E Xrr(N). Suppose next that hypothesis (2) is valid. Since x(1) is a 

1f-number, X extends B an~ <po Consequently, o(tp)<p(l) is a 1f-number, and 

induction again yields that tp E Xrr(N). We may assunle that M N = G. 

Without loss of generality, B MnN and tp MnN have a COlnmon irreducible 

constituent J.Lj otherwise namely replace tp by a suitable G-c<::mjugate and 

apply' 21.3 (iii). Since () E Xrr(M), also p, E Xrr(M n N). Under hypothesis 

(1), N /(A1nN) === G / M is a 7f-group, a~d induction, implies that <p E X rr(N), 

as desired. It thus remains to cOllsicler hypothesis (2), where N/(N n 1\1) is 

a 1f'-group. 

Now o(p,) . p,( 1) is a 1f -number, because p, is 1f-special. Also <pC 1) I X( 1) 
, ,I 

: lis a 7f-number, and since N I(N n M) is a 7f'-group, <p MnN = fl· By Lemm~ 
; ~ . ' 

11 21.1, we let p be the canonical extension of /.1, to N. By Lemma 0.9, <p = >..p 
I for SOlne linear character /\ -E Irr(Nj(.i\;f n JY)). Note that AI centralizes 

,\ Nj(M n N), and so tpill = >"(P)1l1 for all m E M. This implies that XN = 
\ l>"(J.L1+" '+P,I), where j-l is a 1f-numb~r, and J.Li E Irr (N) are M-conjugates 

,1 of It; In particular, p, i( 1) = 'p,( 1) and o(p, i) = o(P) = o(J.L). Now 

J 
~l 
'j 
1 
1 
1 

~ 1 

;.:1, 

\':: 
~I 

"'J 

1 
,.1, 

,J1 
'::t 

" 

I, 

det(XN) = >..I'/L(l)-!. II det(,LLi)f, 
i=1 

Since O(ILi), f ·z· pel) and O(XN) are 1f-ntunbers, so is 0(>"). But>.. E 

Irr (N / (!vI n N)) and N j (M n N) is a 1f'-group. Consequently,>" = 1, (P, = P 
and o(<p) is a -ir-number: As p, E Xrr(.i\;f n N), the inductive hypothesis 

inlplies <p E X rr( N), as desired. 0 

We next sum up what we know about restriction and induction of 1[­

special characters. If N:S! G and B,E Irr(N), we setX?T(GIB) = Irr(GIB) n· 

X rr( G). 

l 

l 
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21.5 Proposition. Let N ::;) G; X EXrr(G) and"cp E Xrr(N). 

(a) EvelY irreducible constituent of XN is 7r-special .. 

(b) If GIN is a 7r'-group, then X N is irreducible and X is the canonical 
extension of X N. 

(c) If GIN is a 7r-grol1p, tilen X rr( GI<p) = Irr (Glcp). 

(d) If GIN is a 7r'-group, then X rr( G/cp) is nOll-empty if and only if c.p is 

G-invariant. In this case, X rr( GI<p) = {cp}, where <?; is the canonical 
extension of <P to G. 

Proof. Part (a) was already mentioned as Remark 91" 3 (1') (b) l' . 
• OJ. , s an lIn-

mediate consequence of the definition of 7r-special characters and (c) follows 
from Lemma 21.4. 

For (d), fjrst suppose that 'Ij; EXrr{GI<p). Since GIN is a 7r'-group and 

'Ij;(1) is a 7r-number, 'lj;N = <p'and IG(c.p) = G. Conversely suppose that 

c.p E Xrr(N) is G-invariant. Since o(c.p)·<p(l) is a 7r-number, <p has a canonical 

extension <?; to G with o(<p) = o(cp), by Lemma 21.1. Since o(<?;) '<p(1) is 
a 7r-numhcr c.p~ E X (Glc.p) l·y L· 21 4 A· I ' rr ,J CHIma .". s we la.ve seen above, every 

,'Ij; E_~rr(G/<p) must extend c.p, and clearly sati~fies (o(7p),/GINJ) = 1. By 

th(~ llIlH}UCnCSs statement of Lemma 21.1, ..-Y rr( G/<p) = {<?;}. 0 

We continue with a fact which was first observed by Gajendragadkar, and 

which was the starting-point for many rather recent results about 7r-special 
characters. 

21.6 TheorelU (GaJ·endragadkar). LtG b . "e e a7r-separable group with 
a, a1 E Xrr(G) and {3, (31 E Xrr/(G): Then 

(a) 0:{3 E Irr (G), and. 

(b) if a{3 = al{31, tijen a ~ a] and {3 = /31, 

Pr~qf. We argue by induction on IGI .. Let lvI be a maximal normal sub­

grOtlp of G. \iVithout loss of generality, G/A1 is a 7r-g;oup. In particular, {3 

and /31 must restrict irreducibly to lvI and so 13M, (131),.,1 E X rr /(1vJ)." 

Let <p be an irreducible constituent of aM, so that tp E XrrUvI). By 

the inductive hypothesis, <p{3M E Irr(M). Clearly, IG(<p):::; I c (tp{3M)' For 

x E Ic(<p!3M) , we have that tpx E Xrr(M) by Remark 21.3 (ii!),· and also 

tpx {3 M = (tp{3lvJ)x = c.p{3 M. Applying the uniqueness part of the inductive 

hypothesis, cpx = tp, and so IG(tp) = IG(tp{3M~' By Lemma 0.10, a{3 E 

Irr (G). 

Say t.p = tpl, ... ,tpt are the distinct irreducible constituents of aM. Then, 

by induction, the <Pi{3 At are irreducible and distinct. Observe that the. <Pi{3 M 

(1.::; i :::; t) are the distinct irreducible constituents of (afJ)M. Likewise, if 

, ,1, ... , ,s are the distinct irreducible consti tllcnt;s of (n 1) M, t,hell ,j ({" I) M 

(1 :::; j :::; s) are the distinct irreducible constituents of (0:1 /3d M. Since 

a{3 = 0'.1/31, it follows that {c.pi{3M 11 :::; i :::; t} = {,j(/3dM 11 ::; j ~ s}. 

Of course tpi, 'i E Xrr(M) and {3M, ({3j)M E Xrr/(lvI). It thus follows by 

indu,ction that {3M. = ({31)M. Since (3,{31 E X rr/(GI{3M) and GIM is a 7r­

l?roup, we obtain {31 = (3, by Proposition 21.5 (d) .. Now afJ = 0'.1{3 and a, 

alE Irr (GI<p). There{ore Lemma 0.10 yields 0: = al, proving (b). 0 

We next show that a primitive character X of a 7r-separable group has a 

unique factorization X = a{3 with a E Xrr(G) and,{3 E Xrr/(G). In order 

to give ?- straightforward inductive argument, we use a weaker primitivity 

condition in the hypothesis and so get a stronger statement. 0" 

21. 7 Theorem. Let X E Irr (G), and suppose tllat tllere isa nornlal series 

1 = Mo < M] < M 2 ···< Mn ~ G ~UCjl tllat 1I1/i/lvIi - 1 is a 7r- or 7r'-group 

and that XMi is 11Omogeneous for all i. Tllen X factors uniquely as X = a{3 

witl] aE Xrr(G) and (3 E Xrr/(G). 

Proof. ·We argue by induction on IGI and set Jv! = M n - 1• Now XM = ep, 

for an integere and Ji E In (M). Because JiMi is homogeneous for all 

i ~ n - 1, the inductive hypothesis implies that /-L = ,0 where, E Xrr(A1) 

and 0 E Xrrf(J..I/). Furthermore, this factorization is unique. Because /-L is 
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G-invai'iant, SO are I and '5 (see 21.3 (iii)). 

Without,loss of generality, GlkJ is a 1f-group. Since 5 E Xrr/(M). is 

G-invariant, there exists a unique (3 E X rr' (GI8) and 13M == 8 (see Propo­

sition2L5 (d)). By Lemma 0.10, X = a{3for some a E Irr(GI'Y)' Since 

GlivI is a 1f-group, Proposition 21.5 (c) implies Xrr(Gh') =: hr(GI,). This 

gives the existence of the factorization. UniqueI1ess follows from Theorem 

21.6. o 

:Oy a trivial induction argument, we can deduce the following result from 

Theorem 21.7. No'te that by Berger's Theorem [Is, 11.33], the notions of 

primitivity an,d quasi-primitivity coincide for solvable groups. 

. / 
21.8 Corollary . Let C be solvable and let X E Irr (C) be primitive. Then 

X = rIp Xp wit1] uniquely determined Xp E Xp( C). ' 

21.9 Propositio.l1.. Suppose that G = M Ii with lv'I ~ G. Assume tl1at 

IP E Irr(1\.1) £llld IPMnH E Irr(M n H). If Io(<p) n H= lIi(<PMnu), then. 

X f-~ XIi defines a bijection from Irr(GI<p) onto Irr(HICPMnH)' ' 

Proof. Let 1 = 1o(<p), so that 1 n H ~ 1Il(<P)' Note that M n (1 n Ii) = 

MnH and M(InH) = InM H = 1. In particular, if 1 < G, induction yields' 

that"p f-+1j;:nli defines a bijection from Irr(II<p) onto Irr(InHIIPMnH)' By 

our hypothesis, III ( <P MnIi) = In H, and Clifford corresp~ndence implies 

that 1j; f-+ ("p InH) H is a bijection from Irr(II<p) onto Irr( III<p MnH). Because 

IH = C, (-fInJ-I)H = (1j;O)H (cf. [Is, Ex. 5.2]). So 1j; f-+ ("p°)H is a bijection 

from Irr(II<p) onto Irr(HI<PMnH). Again by Clifford correspondence,,,p ,H 

1j;0 defines a bijection from hI' (II<p) onto Irr (CI<p), and the r:esult follows 

when I < C. Thus we assume that '<P IS C-invariant an~L<p MnH IS H­
invariant. 

Because <p E Irr (N!) is G-invariant, 

Chap, \'1 :'::,1 

Likewise, we have [(<PMnJ-I)H, (<PMnJ-I)J-l] = IHI(M n H)I = IGIMI. Write 

<pc = Zi aiXi with ai > a and distinct Xi E Irr (GI<p), Then : 

Since C = MH, <p~ = (<PMnH)J-I (d. [Is, Ex. 5.2]). Thus 

j j 

Consequently, [(Xi)H,(Xjhd = 8ij, i.e. (Xi)H E Irr(H) and (Xi)H =1= (Xj)H 

for i =1= j. Since (<p MnH)H = Zi ai(X i) H, the map X f-+ X Ii is a bijection 

,from Irr(GI<p) onto Irr(H\<PMnlI). 0 

21.10 Theorem. Suppose that G is 1f-separable and Ii S G has Jrt-index. 

Tllen X f-+ XH defines a 1-1 I'nap from Xrr(G) into X7r(H). 

Proof. We may assume that H is a maximal subgroup of G. Set M = 

orr' (C) By Proposition 21.5 (d), X f-+ XM is an injection from X 7r(C) into 

Xrr(M). Now M nH has 1ft-index i~ M, because M ~'C. If M < G, 

, we apply the inductive hypothesis to X rr(M) and see that X f-+ X MnII is 

an injection from Xrr(G) into Xrr(M n Ii). In particular, X f-+ XH is an ' 

injection from.X 7r(G) into Irr(H). For X E Xrr(C), the character XH'E 

Irr(H) extends XMnH E Xrr(M n H). Since HI(A1n H) is a Jr'-group and 

O(XH) 'I o(X) is a 1f-number, in factXH = (~) is the canonical extension 

, of XMnH. By Proposition 21.5 (d)', XH E X 7r (H), and the theorem holds 

should M < C. 

We may now choose N ~ G with GIN a non-trivial 1f-group. Then 

N H = G and N n H has 1ft-index in N. By the' inductive hypothesis, 

cP f-+ <PNnH is an injection from Xrr(N) into Xrr(Nri H). In particular, 

Io(<p) n H = IJ-l(cp) = h-l(CPNnJ-J). By Proposition 21.9, X f-+ XH defines 

a bijection from Irr(GI<p) onto, Irr(HI<PNnJI). Since GIN ~ HI(N n H) 

] 

]

1 

I: 
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is a 7f-group, Proposition 21.5 (c) yields that Irr(GI<p) = ,X1("(GI<p) and 

Irr(HI<PNnH) = X1("(HI<PNnH)' Consequently X 1--+ Xl-I defines a 1-1 map 

from X1("(GI<p) into X1("(HI<PNnU), given t.p E X1("(N). By Propo'sition 21.5 

(a) and the injectivity of cp ~ «JNnH, restriction is a 1-1 map from X1l"(G) 
into X1("(H). 0 

We let QJ be the field Q(c) 'obtained by adjoining a primitive fth root 

of unity c to Q. This is of cour;3e independent of the choice of c. For 

1jJ E Char (G), we have Q("p) ~ Qg where 9 = exp( G). 

21.11 Corollary. Let G be 7f-separable, -H E; Hall1("(G) and X E X1l"(G). 

TlJen Q(X) = Q(Xu) ~ Qh wlJere It = exp(H). 

Proof. The Galois group Gal (QIGI/Q) permutes both hI' (G) and X 1("( G) 
, \ 

(see 21.3 (iv)). If (J' E Gal (Q(X)/Q(XH)), then (XO")H = (XH)O" = XII. Since 

by Theorem 21.10" X 1--+ XII isa.n injectio~ from X1("(G) into X1("(H), it 

follows that xO" = X· Thus (J' = 1 and Q(X) = Q(X H) ~ Qh. 0 

\ 

§22 Sonle Applications - Character Values and 

Feit'"s Conjecture 

As in the previous section, we let Qn denote the cyclotOli-lic extension of 

0. generated by a pr'imitive nth root of unity. If X E Irr (G), then Q(X) ~ Qg 

where 9 is the exponent of G. Set f = f(x) to be the slnallest integer with 

Q(X) ~ QJ. Generalizing a question of R. Brauer, W. Felt c~njectured that 

G necessarily has an element of order f. While Gow [Go 3J established the 

conjecture for groups of odd order, later Amit and Chillag [AC 1] extended 

this to solvable groups. Ferguson and Turull [FT 1) then gave another proof 

using factorization of primitive characters. With further use of the results 

ofSe:ction 21, Isaacs found an even slicker, proof, which we present here 

with his permission. Due to further results of Ferguson and Turull, Feit's 
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conjectur~ also holds provided that the non-solvaLle composition factors of 

G satisfy certain conditions. For arbitrary G however this conjecture is still 

open. 

A related question is how'large can IQJ : Q(x)1 be, where~gain f == J(X)?' 
One wo~ld expect this to be s~nall. For li~ear characters X, obviously this 

, is 1. . Cram [Cr 1] proved for solvableG and arbitrary X E Irr (G), that 

IQJ : Q(x)1 divides x(1). By using p-special characters, he gave a second 

and much shorter proof[Cr 2], which we present. This result certainly does 

not extend to arbitrary G, as is evidenced by' As (see discussion following 

Theorem 22.3). 

We start by considering Feit's conjecture. In a minimal counterexample, 

X E Irr (G) is rather easily seen to be primitive' and thus the factorization 

tech~iques of Section 21 apply. 

22.1 Theorern. Let X E Irr (G) witl1 G solvable. Let f = f(x). Then G 

has an eleI{lent of order f. 

Proof. We argue by induction on IGI. If X ~ (3G for some j3 E Irr(Ji) and 

H < G, then Q(X) .~ Q(j3)'~ Qf(P)' In particular, QJ ~. Qf(fJ) and thus 

f I f((3)· By the inductiv~ hypothesis,there exists y E H with o(y) = f((3)· 

Since f I f(j3), we may choose x E (y) with o( x) = f., We Inay thus assume 

that X is primitive. 

By Corollary 21.8, we may uniquely factor X = ITpElI. O'p where the prod­

uct is taken over the set 6. of all prime divisors of IGI and where each C:l:p is 

p-special. Let 9 be the exponent of G. F~r (J' E Gal (Qg/QJ), 

X' = xO" = ell O'~t = IT (apt· 
pElI. pElI. 

Since (O'p)O" E X p( G) (cf. 21.3 (iv)), it follows from the uniqueness of the 

factorization that (O'p)O" = Clp for all p E 6. Hence 0.( Cl p) ~ QJ and 

f(O'p) I f· By Corollary 21.11, Q(Clp) ~ Qh p wher~ hp is the exponent of a 
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Sylow p-subgroup of G. Consequently I(o;p) I hp is ap-poweL If 1r is the Irr(II8) and.(1/>U)G = X. Hence 1jJu = 1/>' and Q(1jJ) = Q(X)Q(8). This ~roves 
set of prime divisors of I, then 7r ~ /1 because! IIGI. For Ii E /1 \ 7r, it part (a). 

follows that I( a p ) = 1 and ap 'is rational-valued. We may clearly assume 

that 7r i- 0 .. 

Let p E 1r. Observe that the group L := Gal (Qf IQf Ip) is cyclic. In 

fact,.ILI = p when p2/ j.When p2 f J, then L ~ Gal (QpIQ) and is cyclic 

of order p - 1. Let (0" p) . ~ L ::; Gal (QfIQ)· Because Q(X) i. Qf Ip, we 

have XUp t= X and soC aq)Up f. aq for some q E L},. By the last paragraph, 

I(aq) is a q-power div~ding I. If q f. p, then Q(a q ) ~Qf(aq) ~ Qf/p, a 

contradiction' because a? f. aq and (O"p) = Gal (QfIQf/p)' So q = p and 

(ap)Up i- ap. 

Next let 9 E G. We may assume that f f o(g) a~d thus (o(g),/) I lip 

for some p E 1r dependent on g. Now Q(ap(g» ~ QO(9) n Qf ~ o.f Jp' Thus 

(apyr(g) = cx.p(g) for some p E 1r dependent ~n g. 

Now W := I1pE rr((ap )Up -ap ) is identically zero on G. Recall that for each 

p E 1r) a p and (a p) Up are p-special characters. Expanding the generali~ed 

charader IJ!, we get ~ = ±81 ± O2 ••• ± Ol with I = 21rrl characters OJ, each 

being, a product OJ = I1pE rr (3p of p-special characters f3p. By Theorem 21.6; 

Bj EIrr( G) for all i. Furthermore, Bj f. Bj for i f. j, because (ap)Up f. ap for 

all p E 7r and because of the uniqueness of factorizati6ri. But W is identically 

zero on G, violatin~ the linear independence of the elements of Irr (G). This 

contradiction proves the result. D 

22.2 Proposition. Let N ~ G, 0 E Irr(N), I =1G (0), 1/> E Irr(IIO) and 

X = lpG. Let T = {g E G I B9 is Galois-conjugate to. O}. Tl1{~n 

(a) Q(X)Q(B) == Q(1jJ); 

(b) Q(X) ='Q(1jJT);and 

(c) l~ T and IQ(1/J): Q(x)IIIT/ll· 

ProaL Clearly Q(X)Q(B) ~ Q(1/J). If a E Gal (Q(1/J)/Q(X)<Q(B», then 1pu E 

Now Q(X) ~Q(1jJT) because (1jJT)G = X. If T E Gal (Q(t/JT)/«J!(X», then 

(X, or]' i- 0 and hence or = ot for some t E T. Now (1pTyr lies ov~~ ot and' 

also over O. Since (( 1jJ TV) G = X = (1/J T) G, we have that (1/J TV = 1f, . Hence 

Q(X) = Q(1/>T), proving (b). 

For t E T,' Bt is Galois-conjugate to B and hence I =' lG(Bt) for all 

t E T. Hence I ,S! T and T / I faithfully and regularly permutes the set of 

Galois conjugates of 0, although the act~on is not necessarily transi ti ve. For 

a E Gal (Q( 1/J )/Q(X»), BCt is a constituent of XN and so BCt = Bt(a) for some 

tea) E T. Now tea) is uniquely determined (niod I). Since Q(V) ~,QjGI' 
then Gal(Q( 1jJ )/Q(X» is abelian. It is then easy to see that the lllap (V I---) 

I t( a) is a homomorphism. If a is' in the kernel of the homomorphism, then 

a centralizes Q(O)Q(X) = Q(lp) by part (a) and a = 1. So a I---) It(a)is 

a 1-1 homomorphism, whence IQ(1jJ) : Q(x)1 ~ IGal(Q(1/J)/Q(x»1 divides 

IT: II. This proves (c). o 

22.3 Theorem. Let X E Irr (G) and I. = f(x)· If G is solvable, then 

IQf : Q(x)11 X(I). 

Proof. We argue by induct~on on IGI. First suppose that N ~ G, BE' 

, Irr (N) is an irreducible constituent of X N and that I G( B) < G. Choose 

1/> E Irr (IG(B)IB) with 1jJG = X. By the inductive hypothesis, IQf(1/') : Q( ~)L . 
divides 1/>(1). By Proposition 22.2, IQ(1/» : Q(x)l divides IG : IG(B)I = 
X(I)/1P(1).' Thus IQf(¥') : Q(x)ll.x(I). Since Q(X) ~ Qf ~ o.f(1/'), in fact 

IQJ : Q(x)1 I X(I). Weare dou'e in this case. We may assume that x· is 

quasi-primitive. 

, ' Let p \IGI. ByTheorem 21.7, X :=;; a(3 w'here a ,E Xp(d) and (3,E Xpl( G). 

I Set a = J( a) and b' = f((3). Fix P E Sylp( G) and H E Hallp ' (G). By 

Theorem 21.10 and Corollary 21.11, ap and f3H are irreducible, Q(O') = 
Q(ap) ~ Qexp(p)ancl Q((3) = Q((3H)~ Qexp(U)' In particular, a = I(ap), 

l 
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b = fUh-l) and (a, b) = 1. Since H < G, the inductive hypothesis implies 

that IQb : Q(,8)11 ,8(1). We also claim that IQa : Q(o:)1 divides 0:(1)~ This 

follows via the inductive hypothesis when P < G. Otherwise, 0:' = X, is a 

primitive character of P = G. In this case, ,0: is linear (see [Is, 6.14]) and 

IQa : Q( oJ I = 1 = 0:(1). This establishes the claim. 

We next observe that Q(X) = Q(o:)Q(,8). Onec~nt.,ainment is trivial. If 

on ~he other hand T E Gal(Q(o:)Q(,8)/Q(X)), then 0:,8 = X = X1" = 0:1",81". 

Now 0:1" is p-:special and ,81" is p'-special. The uniqueness in Theorem 21.6 

forces 0:1" = 0: and /31" =,8. Thus T = 1 and Q(X) = Q(o:)Q(,8). 

Since (a,b) ='1, we have thatQ ~ Q(o:) nQ(,8) ~ Qa nQb = Q and 
, \ 

QaQb = Qab. Since all these extensions of Q are Galois, 

IQaQb : Q(o:)Q(,8)1 = lQa : Q(o:)I·IQb : Q(,8)I. 

The right-hand side divides 0:(1),8(1) = xU), and thus IQab :,Q(x)llx(1)., 

As Q(X) ~ Qab, it follows that Q(X) ~; QJ .~ Qab, which in turn implies' 

that IQJ : Q(x)11 X(l). '. 0 

Now A5 has two irreducible characters of degree 3, which a~e Galois­

CI)Jljl1gn,t.e (sec [Is, p. 288]). If X is one of th~~m, then Q(X) = Q( 0) and' 

X is rational-valued except on elements of order 5. Consequently, lex) = 5 

and IQJ(x) : Q(x)1 = 2. In particular, the above theorem does not extend 

to arbitrary G. 
.. ~ " 

§23 Lifting Brauer Characters and Conjectures of 

Alperin and McKay 

Let G be p-solvable. We begin this section by proving (Theorelu 23.1) 

that X I-t Xo (recall that ° is'restriction to p-regular elements) is a bijection 

frpm Xp' (G) onto {<p E IB r p (G) I p t <pC 1 )}. It is an easy consequence of this 

, theorem and Corollary 0.27 t,hat every fl E IBrp(G) has a p-rationalliH e, 

i.e. eo = I-" and Q(O ~ Q(c) for a primitive nth root of unity c, p tn. We use 

Theorem 23.1 to prove results about Brauer characters analogous to results 

in Section 15 on the McKay-.:Alperin conjecture for ordinary characters. 

For'exarupIe, if B is a p-block of G with defec~ D and Brauer correspondent 

b E bI(N e(D)), then Band b have an equal number of height-zero Brauer 

characters, i.e. fo(B} = foe?). ,We also show that IIBrp(B)1 ~IIBrp(b)l. Vve 

close by giving Isaacs' canonical p-rational lift of Brauer chatacter, p ::I 2, 

and discuss the case p = 2. 

23.1 Theorem. If G is p-solvable, then X I-t XO is a bijection from X p' (G) 

onto {<pE IBrp(G) I p t <p(1)}. 

Proof. By induction on IGI. If G is a p'~group, then Xpl(G) = In (G) = 

IBrp(G) and the result is trivial. If G is a p-group, then Xpl(G) = {Ie} and 

the result also follows. 

Choose N <J G such that G / N is either a p-group or p' -group. By the 

inductive hypothesis, the mapping () f-t ()o is a b~jection fro?l Xpl(N) onto 

{j.t E IBrp(N) I p t p(l)}. Furthermore (~ee Remark 21.3 (iii)), conjugation 

by G commutes with this bijection. In particular, Ie(()) ,= Ie(()O) for all 

() E Xpl(N). 

If X E Xp' (G), then X E Irr (GI()) for a unique (up to G.:.conjugacy) 

() EXpl(N). If ~ E IBrp(G) and p t eel), then e E IBrp(Glfl) for ,a unique 

(up to G-conjugacy) j.t E IBrp(N). Furthermore p f j.t(1). Hence, given the 

last paragraph, it suffices to fix () E Xp' (N) and show that. xl-t XO is a ' 

bijection from Xp,(GIB) onto {<p E IBrp(GI()O) I p t <p(1)}. 

, First assume that- G / N is a p' -group. By Lemma 0.31', we have that 

X I-t XO is a bijedionfrom Irr(dIB) onto IBrp(GIBO). Sincepf IG/NI, we 

have that Irr(GIB) = Xp,(GIB) by Proposition 21.5. Now,p f X(l) for all 

X E Xpl(Gqe). Consequently X H XO is a bijection from Xpl(GI()) onto 

{<p E IBrp(GI()O) Ip t <pel)}, as desired. / 

-": :. 
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We now assume that G/Nis ap-group. If Ic(B) < G, then Xpl(GIB) = 0 

because every e E Xpl(G) has pi-degree. Since 1G(O) = 1a(OO), we also have 

that {'P E,IBrp(GIOO) I p f <p(l)} = 0 if 1a(O) < G. So we assume tllat 

lc( B) = G. Applying Proposition 21.5 (d), Xpl (GIB) = {X} for an extension 

X of 8. By d~rollary O.27,IBrp(GIBO) = {T} for an extension T of BO. Since 

(XO)N = (XN)O = 0° is irreducible, XO E IBrp( GIBO), i.e. XO = T. 0 

The following c0rollary has a slightly stronger statement than Theorem 

23.1 does, b:ut it is an immediate consequence of the theorem and Proposi­

tion 21.5 (a). 

23.2 Corollary. Suppose that J-L E IBrp(L), that L ~ G ani G is p­

solvable. If p f fl(l), til en tllere exists a unique B EX pi (L) suell tllat 0° = p. 

Also X ~ XO is a bijectioil from Xpl(GIB) onto {1f E IBrp(Glp) I p t 1f(I)}. 

Let G be p-solvable. We use Theorem 23.1 to prove the next Theorem 

23.5. Part (a) gives a result of Huppert [Hu 1J that states every <p E IBrp(G) 

is induced from an irre~ucible Brauer char~cter of pi -degree. The pro?f here 

is some'y.rhat different from Huppert's 1957 proof (which ~as only for solvabie 

I G). Part (b) is a result of IS,aacs [Is 4J that says <p has a "p-rational" lift, 

thereby strcngthcning the Fong-Swan Theorem. (See Definition 23.4 of p­

rational.) Isaac's [Is 4] does obtain Huppert's theorem forp-solvable G and 

also shows' that ,when p I- 2, there is a unique p-rational lift. We prove 

this uniqueness later. Part (c) gives a modular analogue of a well-known 

result for deg~ees of ordinary characters and those of normal subgroups. 

Proposition 23.3, a consequence of Theorem 23.1 and Corollary 0.27, gives 

a useful inductive bool. 

23.3 Proposition. Suppose tl1at <p E IBrp(G) and 1 = M o $.·lvI1 $. .. , $. 

Mn =' G is a normal s~ries of G such that cP Mj is lwmogeneous for each i. 

Assume that Mi+I/Mi is a p-group or a pi -group for 'each i. Then p t <p(1). 

Pr6of. By induction on \G\. We may assume that Mn - 1 < G 'and we let 

ii ,! L 1.1 

M == M n - I . Let j1 E IBr p( M) be the irreducible constituent of <p ~ so that 

<p M = f J-l for an integer f. By the inductive hypothesis, p t fl(1)· , ' 

First quppose that G 1M is a p-group. By Corollary 0.27, <p extends fl· 

Thus p f <p(1). Hence we assume that G/M is a p'-group, 

By Theorem 23.1, there exists'a unique B E Xpl(M) such that BO = fl. It 

follows from uniqueness that Ie(B) = le(p). By Lemma 0.31, <p = XO for 

a (unique) X E Irr(GIB). Since GIN is a pi-group, p t x(l)IO(I) (see [Is, 

Corollary 11.291). Since p does not divide fl(1)'= B(l), we also have that p 

does not divide X(I) = <p(1). D· 

23.4 Definition We say that X E Char (G) is p-mtiona.[ if Q(X) ~ Q,. for 

an integer r such that p t r (i.e. p t f(x)}· 

, Recall that Qr = Q(c:) for a primitive 10th-root of unity c:. By Corollary 

21.11, every X E 'X pi (G) is p- rational. If 1f E Char (H) is p-rational and 

H $. G, thenQ( 1/l C ) ~ Q( 1f) and so 1/lc is p-rational. 

It is relatively easy to see that each <p E IBr p( G) is p-rational (extending 

the definition of p-rational to all complex-valued functions on subsets of G). 

Indeed, <p is only defined on p-regular elements 9 E G and cp(g) is a sum of 

o(g )th roots of unity. Consequently, <p is p-rational. 

23.5 Theoreln. Let G be p-solvable and <p E IBrp( G). Then 

(a) Tl1ere exists H $. G and pE IBrp(H) such that flG = <p a.nd p t /1(1); 

(b) There exists a p-rational X E Irr (G) with Xo= <p; and 

:1 (c) If M:;! G and a is a constituent ofcpM, then <p(1)la(l) IIG/MI· 
j 

, ~ 

iJ 
;:1 Proof. (a, b) By induction on IGI. If p t <p(1), then part (a) is trivial and 

i] Theorem 23.1 shows there exists X EXp,'(G) with XO =<p. By C9rollC\.ry 

:1 21.11, X is p-rational. Thus we assume th~t p I <p(1): ' 
Ii 
(; 

J 
] 

] 

J 
J 
J 
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1 

1 
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By Proposition 23.3, there exist]( <J G and 5 E IBrp(I{) such that 

rp E IBrp( G15) and I := I~(5) < G. Choose 1j; E IBrp(II5) with 1j;G = <po 
By the inductive argument, there exists H S; I and fL E IBrp(H) such 

that fL I = 1/J and 1) f fL(I). SincefLG = <p, part (a) follows. Th~ inductive 

hypothesis for (b) implies that there exists a p-rational .\ E Irr (1) such that 

,,\0 = 1j;. Now (,,\G)O = (,,\O)G = 1j;G := 'P, hence ,,\G E Irr(G). Also.\G is 

p-rational because ,,\ is. This proves (b). 

For (c), arguing, by indudiqn on IG : MIIGI, we may assumethat IvI is a 

maximal normal subgroup of G; By Clifford's Theorem 0.8 and the inductive 

hypothesis, 0' is G-in~ariant. If IG.: MI = p, then <p(1) = 0'(1) by Corollary 

0.27. Hence we may assume that G / M is a p'-group. If p 1 0'(1), it follows 

from Corollary 23.2 that 'P(1)/0'(1) = X(l)/B(1) for some B E Irr(M} and 

XE Irr(GIB). Thus cp(l)/O'(l) IIG/MI (see [Is, Corollary 11.29)). Hence we 

may assume that p I 0'(1). 

By Proposition 23.3, we may choose N ~, G with N < M and, E 

IBrp(N) such that ,is a constituent of O'N and I M (,) < M.' We let 1= 

Ic(,) < G. Choose 1/J E IBrp(II,) and r E IBt1,(InNIIr) such that l/JG = <p 

and rM = 0'. Since (1j;Mi)G = 'P, it follows that 1j;MJ is a constituent of 'PMl 

(see [HB, Theorem VII, 4.10]). Since 0' is G-invariant, a is a constituent of 

1j;Ml M' But 'Ij)AII M = 1j;;1nI""[ (see [Is; Exercise 5.2]) and every irreducible 

constituent of 1j; MnI lies iI?- Irr (M n II,). By the uniqueness in Clifford's 

Theorem 0.8, r must be a constituent of 1j; MnJ. Applying the inductive 

hypothesis, 1j;(1)/r(1) divides II: lvI nIl = IMIIAII. Now 

a(~) = 1M : M n Ilr(l) and 1/JM I (1) = 1M I : 111/;(1) = 1M: M n 111j;(1). 

Thus 1j;Ml(1)/O'(l) equals 1j;(l)/r(l) and divides lA-111M I· Since (1j;MI)G = 

cp, cp(l)/a(l) IIG/MI. 0 

If, in Theorem 23.5 (c), G / IvI is a p'-group, then there exist p-rational 

f3 E Irr (1\1) and X E lrr (GIf3) such that XO = <p and f3 0 = (t. Much of 

_the mqtivation of Isaacs' work [Is 4, 5] on lifting Brauer characters was to 

develop a lift that works well with respect to normal 'subgroups, preferably 

I,,} V 
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'a "canonical lift" .We discuss this further below, but first present some 

modular versions of the Alperin...:...McKay conjecture. 

We 'let l(G) = IlBrp(G)1 and 10(G) = I{'P E lBrp(G) I p t <p(1)}I. If 

N ~ G and p E IBrl'(N), then we let I(Glp) '= IIBrp(GlfL)1 and 

Finally, if B is a p-block of G, we letl(B) = IlBrp(B)1 and loeB) be the num­

ber of height-zero Brauer characters of B.' Thus I, counts modular characters 

analogously to how k counts ordinary characters. 

The following proposition will often be used with Theorem 15.9. 

23.6 Proposition. Suppose that Gj I( 11 as a normal Sylow p-subgroup 

M/I{., tllat G is p-solvab1e and B E Xpl(I() is lvI-invariant. If 8 is the 

ca~onicaI extension oiB to 1\1, t'ben [(GIBO) = 10(GIBO) = k(GIB). 

. ·0 ° Proof. By Corollary 23.2 and Corollary 0.27, {B } = IBrp(.i\1IB ) and so 

lBr p( GIBO) = IBr p( GI8°). Since B is the unique p-special lift of 0°, we 

have that Ic(O) = IG(OO). 'By Lemma 0.31, X 1----+ XO is a bijection from 

In(GIO) onto IBrp(GIOO) = IBrp(GIBO). Since p t 8(1)IG/MI, p t x(1) 
'f~r all XE Irr (GIB) by [Is, Corollary 11.29]. Hence k( GIB) = l( GIBO) = 

lo( GIBO). 0 

23.7 Theorem. Suppo~e that G is p-solvable, N ~ G, and fL E IBr1J(N) is 

inva.riant inP, wilere PIN E Sylp(GIN). Let HIN = NG/N(PIN). Tllen 

Proof. We argue by induction on IG: NI. We assume that p f fL(1}. Choose 

N ::; I{ ~ G minimal such that G I If has a normal Sylow p-subgrohp. If 

}( = N, th~ result is trivial. Without loss of generality,' choose N :::; L < I( 

, I 



such that 1(1 L is a chief factor of G. Since G I 1< does have a normal Sy lew 

p-subgroup and GIL does not, 1(IL is a pi_group. 

LetJIL = Na/L(LPIL). Then J < G. If ri E IBrp(L) is P-invariant, 

then every J-conjugate of 17 is P-invariant. Furthennore, the Frattini ar­

gument shows that if 1], ()' E IBrp(L) and are P-invariant and G-conjugate, 

then 1] and ()' are indeed J -conjugate. So we may choose P-invariant 1]1,.~ .. ,1]t 

E IBr peL) s~ch that p t Th(l) for each i and Eiuchthat every P-invariant 

()' E IBr p (Llfl) of pi-degree is G-conjugate (equivalently J -conjugate) to 

exactly one1]i. (W~ allow the possibility that there are no P-invariant 

1] E IBrp(LI/J) of p/~degree.) 

If a E IBrp(Glfl) U IBrp(Jlfl) and p f 0'(1), then a lies over exactly one 1]i. 

If N < L, the inductive hypothesis yields that lo( GI']i) = lo( JI7/i) for each 
i. Then 

t t , 

loCGlfl) = L lo(GI17i) = L lo(JI1]i) = ~o(Jlfl). 
i=1 i=l 

The inductive hyp~thesis also implies that loC JlfJ) = loCH IfJ), because J < 
G. The res'-llt follows when N < L. So we assume thatN = L(and H = J). 

Now P ~ Ie(fl) n H = IH(fl). If Ie(fJ) < G, the inductive hypothesis 

and Clifford correspondence yiel,cls that 

as desired. Hence we assume that f.L is G-invariant. 

Now G = 1(H and we let G = 1( n H. Note that GIN = CJ(/N(P), 

By Theorem 23.1, fl = <po for a G-invariant ,<P E Xpl (L). By 'Proposition 

21.5 (c) and Lelnrn:a 0.31, Xpl(J<I<p) = Irr(I<I<p) and e I--t eO is a bijection 

from Irr(I(I<p) onto IBrp(I(lft). Also Ie(e) =Ic(eO) for each O'E Irr(I(I<p), 

Similarly Xpl (GI<p) = Irr (GI<p) and f3 I--t f3 0 is a bijection from Irr (GI<p) ont? 

IBrp(Glfl)· Observe that <P extends to P by Lemma 21.1. By Theorem 15.9, 

there is a bijection' from {B E Irr(1(I<p) I B is P-invariant} onto Irr(GI<p) 

and this Inap commutes with conjugation by Ii. Now, if X E IBrp(GI,u) 

and p f x(l), then X E IBrp(GIBO) for a P-invariant B Elrr(](I<p), Since 

G = I{H, 0 is unique up to II-conjugacy. Similarly, when r E IBrp(HlrL), 

then r E IBrp(HIf3°) for some f3 E Irr(CI<p). Of course f3 is unique up to 

H-conjugacy and note that f3 is P-invariant by Lemma 0.17. S~ it suffices 

to fix a P-invariant e E Irr (]<I<p) and (3 E Irr (CI<p) such that B +-t (3 as in 

Theorem 15.9 and show that lo(GIOO
) == lo(HI(3°). Theorem 15.9 (v) says 

th~t k( GIB) ==:= k( CI~) where B and ~ are the 'canonical extensions of e and, 

(3 (respectively). Applying Proposition 23.6, lo( GleO
) = lo(HI(3°). 0 

The conclusion of Theorem 23.7 says that lo(Glfl) = lo(Hlfl) whenever 

p f fl(1)· Is it true that lo(GlfJ) =:= lo(Hlp) even when plfl(1)? The answer is 

yes and we refer the reader to [Wo 7] and the discussion at the end of this 

section. Iuthe meantime, we derive some conseqnences of Theorem 23.7. 

23.8 Corollary. If P E Sylp(G) and G is a p-solvable group, then 

lo(G) = lo(Na(P)). 

Proof. Set N = 1 in Theorem 23.7., o 

We next give the block·wise version of the last theorem. The proof is 

similar to that of Theorem 15.12. 

23.9 Theorem. Suppose tllat B is a p-block of a p-solvable group G, that 

D is' a defect group of E, and b E bl(Na(D)) is the Brauer correspond~nt 

;f B. Then loeB) = loeb). 

Proof. Argue by induction on IGI. Let I{ = 0p' (G). We apply Corollary 

0.30. We may choose 'e E' Irr (I{) so that E covers e and D :::; Ie(e). 

Let fl = Bp(I{,D) E IiT(C]((D)) be'the Glauberman correspondent of e. 
Then In Na(D) = INa(D)(fl). There exist blocks Eo E bI(!) and bo E 

bI (I nNe (D)) such that bo is the Brauer correspondent of Bo. Furthermore 

there is a height-preserving bijection (character induction) between Eo and 

B. So la(Bo) =;= loeB). Similarly, [a(bo) = loeb). If I < G, the inductive 
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hypothesis implies that lo(bo) = 10(Bo). Then loeB) = loeb), as d~sired. We 

thus assume that 1= G, i.e. B is G-invariant. 

By Theorems .0.28 and 0.29, IBrp(B) = IBrp(GlB), D E Sylp(G), and 

IBrp(b) = IBrp(Na(D)lJ.L). Observe that ](Na(D)/]{ = Na(I{D/K). By 

Theorem 23.7, we have that loeB) = lo(GIB) =' 10(I{Na(D)lB). Triv-' 

ially, loeb) = 10(NG(D)IJ.L). tt suffices to show that 10(]{N~(D)IB) = 
10(Na(D)lJ.L). Let fJ E Irr(](D) and p, E Hr(GD) be the canonical ex­

tensions of Band J.L (respectively). By Proposition 23.6, lo(I<Na(D)IB) = 

k(I{Na(D)lfJ) and io(Na(D)IJ.L) = k(Na(D)IP,).But on the other hand, 

k(I{Na(D)lfJ) =' k(Na(D)IP) by application of Theorem 15.9 (v) with 

L = 1. Hence lo(l(Na(D)IB) = 10(Na(D)IJ.L), as desired. 0 
- , ' 

A conjecture rel0-ted to the Alperin-McKay conjecture is Alperin's weight 

conjechL7·e. While we do not state the weight conjecture, we do mention 

that it would imply the Alperin-McKay conjecture. Another consequence 

, would be that I(B) 2 l(b) where B is a p-blbck with Brauer correspondent 

b. We next prove this inequality for p-solvable G. We do mention that it has 

been widely rumored for many years that Okuyama has verified the weight 

conjecture for p-solvable groups, but this has yet, to appear in print. 

23.10 Thebrenl. Suppose tJlat G is p-solvable, P/L E Sylp(G/L), and 

J.L E IBrp(L) is P-invariant. Assume that pf J.L(1). HH/L = Nc(P/L), 

, then I( GIJ.L) 2 I( HIJ.L). 

Proof. We argue by induction on IG : LI. Let 1= Ia(J.L). Then P ::; I and 

N1(P) = HnI = IH(J.L). If 1< G, the inductive argument and the Clifford 

correspondence (Theorem 0.8) yield that 

Thus we assume that J.L is G-invatiant. 

Le~ M / L = Ope G / L). Since fL is invarian,t i~l G, it follows from Corollary 

0.27 that IBrp(MII.t) =- {O'} for a G-invariant 0' and p f 0'(1). Now L ::; 

M ::; P::; II and HjM = Na(PjJvJ). If L < M, we employ the inductive 

hypothesis to conclude that 

I ( GilL) ~ I ( G 10') 2 l ( H 10') = I ( H I fL) . 
, ' 

The conclusion of the theorem is satisfied in this case. We tllUS assul~e that 

Op(G/L) = 1 and G> L. 

We now let ](/L= Opt(GjL) so that J( > L. Observe that I{H/J( = 
NafJ((J(P/ln. By Theorem 23.1, there exists a G-invariant ((' E Xpt(L) . 

with (('0 = 11 • By Lemma 0.31, B I-t BO is a bijection from Irr (1(1((') onto 

IBrp(I(IJ.L)' In.particular Ie(B) = Ie(f)O) for BE Irr(I(I((') and every element 

of IBrp(I(IJ.L) has p'-degree. 

If 0:, I E IBrp(J{) are P-invariant a~d G-conjugate, the Frattini argument 

shows that 0: a.nd I are indeed H-conjugate. Thus there exist P-invariant 

, B1 ,. ; • ,B t E Irr (I(lcp) such that whenever 0: E IBr]l(I{lp) is P-invariant, 

then 0: is G-conjugate (and H -conjugate) to exactly one B~. In particular) 

for i f: j, 

IBrp( GIB?) n IBrp( GIBj) = 0 and 

IBrp(I(HIBn n IBrp(I{HIBJ) = 0. 

By the inductive hypothesis, l( GIBn 2:: l( I( H IBn for each i. Hen~e 

t t 

I(GlfL) 2 L I(GIB?) 2 Ll(I(HIBn. 
i=1 i=l 

We observe that tp extends to P b'y Lemma 21 -.1. We now a,pply Theorem 

': 15.9 to I{H to conclude there exist 131,., .. ,f3t E Irr(C?ltp)~ Xpt(CI,cp) such 

t.hat each 13 E Irr (Gltp) is H -conjugate to exactly tme f3i and snch t.hat 

, [(B i )c,f3df: O. Furthermore part (v) of Theorem 15.9 (with 111 =I(P and 

A = 1) and Proposition 23.'6 imply for each i that I(I(HIBn = I(Hlf3n· 

But each ~ E IBrp( Glp) is H-conjugate to exa.ctly one f3? and so l( Hill) = 
I::=ll(HI,Bn. Combining with the la.st paragraph, 

t t 

l(Gllt) 2:: Ll\]( Hlen = L l(HlfJ?) = I(Hlll). 
i=] i=l 
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This completes the proof. o 

23.11 Corollary. Under the l1ypotlleses of Thcorclil 23.10, I(Glll) = l(Hl/l) 

if and only if l(GlfL) = 10(GlfL). 

Proof. Since p t fL(1), we have that J-t= <po for a unique <p E Xpl(L). Since 

J-t and <p are P-invariant, it follows from Proposition 23.6 that l(Hl/t) = 

In( HIp,), By Theorems' 23.7 and 23.10, we HOW have that 

The corollary follows. o 

The hypothesis that p t IL(l) in Theorem 23.10 and Corollary 23.11 is not 

really necessary. See [Wo 7] and the discussion at t.he end of this s~di~n. 

23.12 Corollary. vVhenever G is p-solva?le and P E Syl;( G), then I( G) ~ 

leN c(P)). Equality holds if and onlY.if P ~ G .. 

Proof. Set N = 1 i~1 Theorem 23.10 to obtain leG) ~ l(Nc(P)). We 

trivially have equality if P ~ G. If leG) = f(Nc(P)), then Corollary 23.11 

yields that leG) =lo(G). By Theorem)3.1 (c), P ~ G. O. 

23.13 Theorell1. Let E be a p-block of a p-solvable group. Suppose D is 

a defect group of Band b E bl(Nc(D)) is the Brauer cOLTesponden't of IJ. 
Then I(E) ~ l(b) with equality if and only if I(B) = loeB). 

Proof. This theorem can be proved by Fong reductiol;1, Theorem 23.10 and 

Corollary 23.11. Since the proof is essentially identic~l to those of Theorems 

15.12 a.nd 23.9, we omit the details. 0' 

23.14 pefinition. ·We say X E Irr (G) is subnormally p-rational if whenever 

S is subnorma.l in G a.nd T E Irr(S).is a constituent of xs, then T is'p-
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rational. We let Sp( G) denote the set of subnormally p'-rational irreducible 

characters of G. 

We now proceed to give Isaacs' canonical lift of Brauer characters for 

p-solvable grou~s, p =/= 2. Indeed X f-+ XO is a bijectio? frOlIl Sp( G) onto 

IBrp(G). This was originally done in [Is 4]. This theorem is not true' f~r 

p = 2, as is evidenced by an elementary abelian 2-group. Indeed, part of 

the problem is that alinear character of order two is r'ational. For example, 

Theorem 6.30 of [Is] does not hold for p = 2. In a later paper, Isaacs [Is 5] 

does give a canollicallift when p = 2. 

23.15 Lemnla. Supp.?se thatG IN is a p-group, () E Irr (N) is p-rational 

alldp =/=2. Let I = le(f}). TheIl 

(a) There is a unique p-rational1jJ E Irr (ll()). Furthermore·tj; N = e. 

(b) 1pG is the' ullique p-ratiollal cOllstituent" of ()G. 

Proof. Part (a) is Theorem 6.30 of [Is]. Clearly 1pc E Irr( GI()) is p-rational. 

If (3 E Irr(GI()) is p-rational, choose the uni'que 11 E Irr(ll()) with 11 c = (3. 

Since both (3 and (), are p-rational, a routine argument yields that 17 is p­

rational. By part (a), 17 = 1jJ and {3 = 1jJc. 

Since ('ljJ°)N == (1jJN)D = ()? is irreducible,'1jJo E IBrp(ll()O). Part (c) now 

follows from Clifford's Theorem 0.8 and Corollary 0.27. 0 

23.16 The'orern. Suppose G is p-solvable, p =/= 2. Tllen 

(i) X 'f-+ XO is a bijection from Sp( G) onto IBrp( G). 
, , 

(ii) If (3 E 11'1' (G) is p-rational and (30 E IBrp(G), then f3 E Sp(G). 

P·roof. We argue by induction on IGI. The result is trivial if p t IGI· 

Step L If L <l H :S;, G, then () f-+ ()o is a bijection from Sp( L) onto IBrp (L). 
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For each B E Sp(L), everyH-conjugate of B is in Sp(L) and [[f(B) = [[f(BO). 

Proof. The first statement follows from the inductive hypothesis as L < G. 
For B E Sp(L) and h E H, (Bh)O = (BO)h E IBrp(L) and Bh is p-rational. By , 

the inductive hypothesis, Bh ,E Sp(L).' If also h E h-I(BO), then (Bh)O = BO 

and uniqueness in the inductive hypothesis yields that Bh = B. So IH(BO) :::; 

IH( B). The reverse inc~usion is trivial. 

Step 2. Suppose that L <l H :::; G and HIL is a p'-group. If B E Sp(L), 

then 

(i) Sp(HIB) = Irr(HIB); and 

(ii) X I~ XO is a bijection from Sp(HIB) onto IBrp(HIBO). 

Proof. By Step l,Bo E IB_rp(L) and IH(B) = IH(BO). By Lemma 0.31, 

X I-t XO is a bijection from Irr (HIB) onto IBrp(HIBO). 

We next show that each X E Irr (IIIB) is p-r~tional. Now XO is p-rational 

because it is a Brauer character (see discussion following Definition 23.4). ! 

'Wrile IGI = n = rpl for integers l 2: O,r and n, with p t r. Whenever 

() E Gal (Qn/Qr), (XCT)O = (XOt = XD and XCT E Irr (GIB), as B is p-rational. 

Dy the uniqneness in the last paiagraph, XCT = X. Hence X is p-rational. 

To show that X E Irr (HIB) is subnormally p-ratiorlal, it suffices to show 

that whenever M <l H, then the irreducible constituents of XM lie in Sp(M). 

By Step 1, every Ii-conjugate o(B lies in Sp(L). Hence every irreducible 

constituent of XMnL lies in Sp(MnL). Since MIMnL::::: LMILis ap'­

group, the argument of the last paragraph shows that whenever a E Irr(M) 

is a constituent of XM, then aD E IBrp(M) and a is p-rational. The inductive, 

hypothesis implies that a E Sp(A1), as desired. So X E Sp(H). Thus 

Irr (HIB) = Sp(HIB). 

Step 3. Suppose that L <lH:::; G and HIL is ap-group. Let B E Sp(L). 

Then 

(i) 'There is a unique T E Sp(lIIB); 
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(ii) T is the uniqtle p-rational constit~ent of ()H; and 

(iii) IBrp(HIBD) = {T D}. 
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Proof. By Step 1, IH(B) = IH(B D). By Lemma 23.15, BlI has a uilique 

p-rational constituent T E hr (H) and IBr p(HIB) :::;; {TO}. It suffices to show' 

T E Sp(H). To this end, it suffices to show that the irreducible constituents 

of Tl'vl are in SpC1I;J) for all maximal normal subgroups !vI of H. By Step I, 

it suffi~es to show that some irreducible constituent of TM is in Sp( A1). 

Every irreducible constituent, of BLnM lies in Sp(L n A1). The last' 

paragraph shows some irreducible constituent v of ,M is p-rational and 

1)° E IBrp(A1). By the inductive hypothesis 1) E Sp(M). 

First assume that IHIMI = p, so that HILnM is a'p-group. By ~emma 

23.15, (), T, and'v are'the unique p-rational irreducible constituents of ,L, 
,ll and ,M, respectively. The lemma also implies that v H has a p-rational 

constituent ( Then ~ is a constituent of jH. By uniqueness, ~ = T and 

thus [1" M, v] :f. O. Since v E S1'( M), -we are do~e when IH I MI ='p. 

We now assume that HI 111 is a" pi_group. -By SteI? 2, every irreducible 

(:onstituent of v fl lies in Sp( H). Now H = A1 L, and v is a. coqstituent of 

f) LnM M' = C BH)M. Hen~e some irreducible constituent of f)I-I is in Spell). ' 

But'T is the unique p-rational constituent of ()H and so T E Sp(H). This 

completes Step 3. 

Step 4. X I-t XO is a bijection from Sp(C) onto IBrp(G), i.e. conclusion (a) 

of the theorem holds. 

~roof. Since G is p-solvable, we may choose L <l e such that GIL is a p' ~ 

group or p-group. By Step 1, B H BO is a bijection fromSp(L) onto IBr1,(L). 

By Steps 2 and 3, whenever () E, Sp(L), then X I-t XO is a bijection from 

Sp( elf)) onto IBrp( GIBO
). Thus xl-t XO maps Sp( G) onto IBrp( e). 

Suppose X, 1]E SJl(G) and XO = 1]0. VVe may choose 8 E Sp(L) such t,hat 

I 
I 

" r 

I 
I 

I 
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5° is a constituent of both xt and r;1. It follows from uniqueness that x, 
1] E Sp(G/c5). By the last paragraph, X :;= r;. 

Step 5.' Conclusion 

Proof. To c~mplete the proof, we assume that 13 E Irr (G) is p-rational and 

13° E IBrp( G): vVe need to show that 13 E Sp( G). Choose I( ::;) G maximal 

such that the irreducible constituents of 13K lie in Sp(I(). We may assume 

thatI( < G. Fix(t E Sp(I() with 13 E Irr(Gla). 

Let N / I( be a chief factor of G. If p 1 IN / I{l,then every i'~Teducible 
constituent' of aN is in Sp(N). Then some (and hence all) irreducible con­

sti tuents of 13 N are s~bnormally p-rational, contradicting the choice of Ie 
Hence N / I( is a p-group. 

Choose 0( E' hr (Nla) such that If3N, ,) i= O. Then, f/. Sp(N). By Step 3, 

aN has, a unique p-iational irreducible constituent and that lies in Sp(N). 

Hence, is not p-rational. 

Let I = I G( 1) and T = {g E G I ,9 is Galois-conjugate to ,}. Let 

1/) E Irr(1h) 'with 1pG = (3. Since (ljJG)O = ((ljJT)G)O= (30 E IBrp(G), 

we have that ljJo E IBrp(I) and (1j;T)OE IBrp(T). By Proposition 22.2, 

Q( lp T) = Q(fJ) and thus V) T is p-rational. If T < G, the inductive hypothesis 

implies that,1jJ'T E Sp(T).' But then, E Sp(N), a contradiction. Hence 

T =' G. By Proposition 22.2, I ::;) G. 

Now let S = {g E G I ,9 = ,0' ,for some (J' E Gal (Qn/Qr)}. Recall 

IGI = n = ,rpe with p t I. Then I ::; S::; T and 1j;s E Irr(SII). Let' 

T E Gal (Qn/Qr). Since (1j;S)G = 13 is p-rational, (( 1j;St)G = (1j;G)T = 13. 
Now, T and, are constituents of 13 N and thus G-conjugate. Hence, T and 

,are S-conjugate. Thus (V)sy E Irr(SII). Since ((.1j;8y)G = 13 = (1j;S)G, it 

follows from uniqueness in Clifford's Theorem 0.8 that (1j;sy = v)s. Hence' 

1jJs is i)-rational. Since ((1jJS)C)O E IBrp(G), indeed ('ljJS)O E IBrp(S). If S < 
. G, the inductive hypothesis implies that l/)S E SpeS), whence, E Sp(N), a 
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contradiction. Thus S ,= G. 

Now I <J G and 1/;0 E IBrp( 1) because (1/;0)0 = (3 E IBr1) ( G). We claim-
- G 0 

that 1j;0 is G-invariant. If 9 E G, then 1j;9 E Irr(1119) and (1/;9) = (3. n 

the other hand, ,g = ,0' for some (J' E Gal (Qn/Qr). Then I = Ic( ,g) 
and 1j;O' E Irr(Ib9 ). Sin~e (1j;O')C =' 130' = 13, the uniqueness in Clifford's 

Theorem 0.8 yields that 1j;g = 1/JO'. ~hen (ljJoYJ = (1j;0yy = 1j;0 because every 
0' G' . t Brau~r character is p-rational. Hence 1j; IS -lllvanan. 

Now I :5! G, 1/;0 E IBrp( 1) is G-invariant, and (1/;0)G = (30 E IBr1) (G). If 

I < G, we may apply Step 1 to' conclude there ~xists a G-invariant 'T] E Irr (1) 

such that 1]0 = 1/Jo. Also 1]G is irreducible because (1]G)O = 13° E IBrp( G). 

We have both 1] 'E Irr(I) is G-invariant and 1}C E Irr(G). By Frobenius 

. 't -I [C 170] - [1]G 17] - IG . II· Thus I = G and, is reClprOCl y, = 1], - I, - ' .. 

G~invariant. Because 13 is p-rational and 13 N = e, for an integer e, , is 

p-rati~nal. This contradiction completes the p,roof. ' 0 

One can derive from Theorem 23.16 and its proof a niImber of corollaries 

about Sp-characters, p i- 2. For example, Steps 1 to 3 are valid and the 

Clifford correspondence works as one would hope., 

We can now remove the hypothesis that p t f.L(1) for Theorems 23.7 and 

23.10, at least for p i- 2; by using subnormally p-rational lifts of Brauer 

. I' l'l'ft 'Ob . tl t 11 n 1) -+ ') Theorem characters lllstead of p -specIa 1 s. selve 1a weT"'" ' 

15.9 (v) may ,be stated in terr~s of Sp-characters instead of p-rational char­

acters. Otherwise, the details of the proof, which we leave to the reader, 

are identical. An alternative method to remove the hypothesis p t f.L(1) from 

Theorem 23.7 (and p =f. 2 below) is the use of projective representations over 

fields of characteristic p. 

23.17 Theorem. Suppose that G is p-s61vable, that L :5! G and P j L E 

Sylp(GJL). If J-l E IBrp(L) isinvariant in P, ifp i- 2 and HjL = NCjL(P), 

tilen 

(i) 1o ( Gill) = lo ( II I J1 ); an d 
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(ii) l(Glft) ~ [(Hlp) witll equality j{ aJ~d only if l(Glp) = loCGllt). 

Again P =1= 2 is not really necessary. Isaacs [Is 5] developed' a lift that 

wor ks for all p and is the same lift (when p =1= 2) as Theorem 23.16. This lift 

is slightly more tricky. While Clifford correspondence works smoothly for 

. Sp-characters, when p =1= 2, it does not work quite as expected when ]J = 2. 

We will give a brief description of Isaacs' lift, btlt first mention one result 

related to Theorem 23.17 (i). The proof is essentially the same, but one 

must extract a little more information from Theorem 15.9. A proof is given 

in [Vvo 7]. 

23.18 Theorenl. Let G be p-solvable and q-solvable for not necessarily 

distinct primes? and q. Suppose that L ::9 G, Q/L E Sylq(G/L) and' 

H/L = NC/L(Q/L). If p EIBrp(L) is invariant ill Q, tlJen 

Let G be 7r-separable. Isaacs [Is 6J has showil there is a uniquely defined 

subset B1f ( G) ~ Irr (G) such that the following hold whenever N ::9 G: ' 

(i) If X E Brr( G), every irrec.hicible constituent of X N is in Brr(N)j 

(ii) If 8 E Brr(N) and GIN is a7r-group, then Brr(GI8) = Irr(GI8); 

(iii) If () E Brr(N) a.nd G/N is a. 7f'-group, then there is a unique -0 E 

Brr(GIB). Also~' = 1]G for the unique 1] E Brr(IG(B)IB) and 17N' = Bj 

(iv) Each X E Brr(G) is "7r '-rational"j 

, (v) Xrr(G) = {X E B1f(G) I X(I) is a 7r-number}j 

(vi) If 2 E 7r, then Brr(G) = S1f/(G)j and 

(vii) If 7r = {p}, the~ X t-+ XO is a bijection from Bp/(G) onto IBrp(G). 

The definitions of 7r-rational and S1f( G) are the obvious generalizations 

of Definitions 23.4 and 23.14. The notion of B1f-characters has also been 

llsed t.o develop Brauer theorems in "cha.racteristic 7r". For this, we refer 

the reader to Isaacs [Is 6, 8], Slattery [81 I, 2] and Wolf [Wo 6, 7]. 
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